Weak mixing and product recurrence
Annales de l'Institut Fourier, Volume 60 (2010) no. 4, p. 1233-1257

In this article we study the structure of the set of weakly product recurrent points. Among others, we provide necessary conditions (related to topological weak mixing) which imply that the set of weakly product recurrent points is residual. Additionally, some new results about the class of systems disjoint from every minimal system are obtained.

Dans cet article nous étudions la structure de l’ensemble des points faiblement produit-récurrents. Nous donnons entre autres des conditions suffisantes (en rapport avec le mélange topologique faible) qui impliquent que l’ensemble des points faiblement produit-récurrents est résiduel. De plus, nous obtenons certains résultats nouveaux concernant la classe des systèmes disjoints de tous les systèmes minimaux.

DOI : https://doi.org/10.5802/aif.2553
Classification:  37B20,  37B05
Keywords: Product recurrence, weak mixing, minimal system, disjointness
@article{AIF_2010__60_4_1233_0,
     author = {Oprocha, Piotr},
     title = {Weak mixing and product recurrence},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {60},
     number = {4},
     year = {2010},
     pages = {1233-1257},
     doi = {10.5802/aif.2553},
     mrnumber = {2722240},
     zbl = {1203.37026},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2010__60_4_1233_0}
}
Oprocha, Piotr. Weak mixing and product recurrence. Annales de l'Institut Fourier, Volume 60 (2010) no. 4, pp. 1233-1257. doi : 10.5802/aif.2553. http://www.numdam.org/item/AIF_2010__60_4_1233_0/

[1] Auslander, J.; Furstenberg, H. Product recurrence and distal points, Trans. Amer. Math. Soc., Tome 343 (1994) no. 1, pp. 221-232 | Article | MR 1170562 | Zbl 0801.54031

[2] Banks, John Regular periodic decompositions for topologically transitive maps, Ergodic Theory Dynam. Systems, Tome 17 (1997) no. 3, pp. 505-529 | Article | MR 1452178 | Zbl 0921.54029

[3] Banks, John Topological mapping properties defined by digraphs, Discrete Contin. Dynam. Systems, Tome 5 (1999) no. 1, pp. 83-92 | Article | MR 1664461 | Zbl 0957.54020

[4] Blanchard, François; Huang, Wen Entropy sets, weakly mixing sets and entropy capacity, Discrete Contin. Dyn. Syst., Tome 20 (2008) no. 2, pp. 275-311 | MR 2358261 | Zbl 1151.37019

[5] Downarowicz, Tomasz Survey of odometers and Toeplitz flows, Algebraic and topological dynamics, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 385 (2005), pp. 7-37 | MR 2180227 | Zbl 1096.37002

[6] Downarowicz, Tomasz; Serafin, Jacek Semicocycle extensions and the stroboscopic property, Topology Appl., Tome 153 (2005) no. 1, pp. 97-106 | Article | MR 2172037 | Zbl 1076.37007

[7] Furstenberg, H. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, Tome 1 (1967), pp. 1-49 | Article | MR 213508 | Zbl 0146.28502

[8] Furstenberg, H. Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J. (1981) (M. B. Porter Lectures) | MR 603625 | Zbl 0459.28023

[9] Guirao, Juan Luis García; Kwietniak, Dominik; Lampart, Marek; Oprocha, Piotr; Peris, Alfredo Chaos on hyperspaces, Nonlinear Anal., Tome 71 (2009) no. 1-2, pp. 1-8 | Article | MR 2518006 | Zbl 1175.37024

[10] Haddad, Kamel; Ott, William Recurrence in pairs, Ergodic Theory Dynam. Systems, Tome 28 (2008) no. 4, pp. 1135-1143 | Article | MR 2437223 | Zbl 1162.37005

[11] Huang, Wen; Ye, Xiangdong Dynamical systems disjoint from any minimal system, Trans. Amer. Math. Soc., Tome 357 (2005) no. 2, pp. 669-694 | Article | MR 2095626 | Zbl 1072.37011

[12] Méndez, Héctor On density of periodic points for induced hyperspace maps, Top. Proc., Tome 35 (2010), pp. 281-290 | MR 2545027 | Zbl 1177.54019

[13] Oprocha, Piotr Spectral decomposition theorem for non-hyperbolic maps, Dyn. Syst., Tome 23 (2008) no. 3, pp. 299-307 | Article | MR 2455262 | Zbl 1153.37334

[14] Smale, S. Differentiable dynamical systems, Bull. Amer. Math. Soc., Tome 73 (1967), pp. 747-817 | Article | MR 228014 | Zbl 0202.55202