Liouville-type theorems for foliations with complex leaves
Annales de l'Institut Fourier, Volume 60 (2010) no. 2, p. 711-725

In this paper we discuss various problems regarding the structure of the foliation of some foliated submanifolds S of n , in particular Levi flat ones. As a general scheme, we suppose that S is bounded along a coordinate (or a subset of coordinates), and prove that the complex leaves of its foliation are planes.

Dans cet article nous considérons différentes questions relatives à la structure du feuilletage de certaines sous-variétés S n , en particulier les variétés Levi-plates. Comme schéma général, on suppose que S est bornée le long d’une coordonnée (ou d’un sous-ensemble des coordonnées), et on montre que les feuilles complexes de son feuilletage sont des plans.

DOI : https://doi.org/10.5802/aif.2537
Classification:  32V40
Keywords: Levi flat submanifolds, Liouville theorem, analytic multifunctions
@article{AIF_2010__60_2_711_0,
     author = {Della Sala, Giuseppe},
     title = {Liouville-type theorems for foliations with complex leaves},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {60},
     number = {2},
     year = {2010},
     pages = {711-725},
     doi = {10.5802/aif.2537},
     mrnumber = {2667791},
     zbl = {1194.32026},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2010__60_2_711_0}
}
Della Sala, Giuseppe. Liouville-type theorems for foliations with complex leaves. Annales de l'Institut Fourier, Volume 60 (2010) no. 2, pp. 711-725. doi : 10.5802/aif.2537. http://www.numdam.org/item/AIF_2010__60_2_711_0/

[1] Barrett, D. E.; Fornæss, J. E. On the smoothness of Levi-foliations, Publ. Mat., Tome 32 (1988) no. 2, pp. 171-177 | MR 975896 | Zbl 0663.32014

[2] Barrett, David E.; Inaba, Takashi On the topology of compact smooth three-dimensional Levi-flat hypersurfaces, J. Geom. Anal., Tome 2 (1992) no. 6, pp. 489-497 | MR 1189041 | Zbl 0762.32014

[3] Bryant, Robert L. Levi-flat minimal hypersurfaces in two-dimensional complex space forms, Lie groups, geometric structures and differential equations—one hundred years after Sophus Lie (Kyoto/Nara, 1999), Math. Soc. Japan, Tokyo (Adv. Stud. Pure Math.) Tome 37 (2002), pp. 1-44 | MR 1980895 | Zbl 1075.53524

[4] Fornaess, John Erik; Stout, Edgar Lee Polydiscs in complex manifolds, Math. Ann., Tome 227 (1977) no. 2, pp. 145-153 | Article | MR 435441 | Zbl 0331.32007

[5] Lins Neto, Alcides A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier (Grenoble), Tome 49 (1999) no. 4, pp. 1369-1385 | Article | Numdam | MR 1703092 | Zbl 0963.32022

[6] Lupacciolu, Guido; Tomassini, Giuseppe An extension theorem for CR-functions, Ann. Mat. Pura Appl. (4), Tome 137 (1984), pp. 257-263 | Article | MR 772261 | Zbl 0569.32009

[7] Ohsawa, Takeo On the Levi-flats in complex tori of dimension two, Publ. Res. Inst. Math. Sci., Tome 42 (2006) no. 2, pp. 361-377 | Article | MR 2250063 | Zbl 1141.32016

[8] Oka, Kiyosi Note sur les familles de fonctions analytiques multiformes, J. Sci. Hiroshima Univ. Ser. A, Tome 4 (1934), pp. 93-98 | Zbl 0011.31403

[9] Pugh, Charles C. The Morse-Sard theorem with mixed differentiability, Indiana Univ. Math. J., Tome 40 (1991) no. 4, pp. 1387-1396 | Article | MR 1142720 | Zbl 0791.58022

[10] Ransford, Thomas A new approach to analytic multifunctions, Set-Valued Anal., Tome 7 (1999) no. 2, pp. 159-194 | Article | MR 1716030 | Zbl 0994.30029

[11] Shcherbina, N. V. On the polynomial hull of a graph, Indiana Univ. Math. J., Tome 42 (1993) no. 2, pp. 477-503 | Article | MR 1237056 | Zbl 0798.32026

[12] Siu, Yum-Tong Nonexistence of smooth Levi-flat hypersurfaces in complex projective spaces of dimension 3, Ann. of Math. (2), Tome 151 (2000) no. 3, pp. 1217-1243 | Article | MR 1779568 | Zbl 0980.53065

[13] Slodkowski, Zbigniew Analytic set-valued functions and spectra, Math. Ann., Tome 256 (1981) no. 3, pp. 363-386 | Article | MR 626955 | Zbl 0452.46028

[14] Stolzenberg, Gabriel Uniform approximation on smooth curves, Acta Math., Tome 115 (1966), pp. 185-198 | Article | MR 192080 | Zbl 0143.30005