Clifford’s Theorem for real algebraic curves
Annales de l'Institut Fourier, Volume 60 (2010) no. 1, p. 31-50

We establish, for smooth projective real curves, an analogue of the classical Clifford inequality known for complex curves. We also study the cases when equality holds.

On démontre, pour les courbes projectives lisses réelles, une version analogue de l’inégalité de Clifford connue pour les courbes complexes. On étudie aussi très précisément les cas où cette inégalité devient une égalité.

DOI : https://doi.org/10.5802/aif.2516
Classification:  14C20,  14H51,  14P25,  14P99
Keywords: Real algebraic curves, special divisors
@article{AIF_2010__60_1_31_0,
     author = {Monnier, Jean-Philippe},
     title = {Clifford's Theorem for real algebraic curves},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {60},
     number = {1},
     year = {2010},
     pages = {31-50},
     doi = {10.5802/aif.2516},
     mrnumber = {2664309},
     zbl = {1206.14020},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2010__60_1_31_0}
}
Monnier, Jean-Philippe. Clifford’s Theorem for real algebraic curves. Annales de l'Institut Fourier, Volume 60 (2010) no. 1, pp. 31-50. doi : 10.5802/aif.2516. http://www.numdam.org/item/AIF_2010__60_1_31_0/

[1] Accola, R. D. M. On Castelnuovo’s inequality for algebraic curves 1, Trans. Amer. Math. Soc., Tome 251 (1979), pp. 357-373 | MR 531984 | Zbl 0417.14021

[2] Accola, Robert D. M. Plane models for Riemann surfaces admitting certain half-canonical linear series. I, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Princeton Univ. Press, Princeton, N.J., Tome 97 (1981), pp. 7-20 | MR 624801 | Zbl 0491.30038

[3] Arbarello, E.; Cornalba, M.; Griffiths, P. A.; Harris, J. Geometry of Algebraic Curves, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 267 (1985) | MR 770932 | Zbl 0559.14017

[4] Bochnak, J.; Coste, M.; Roy, M.-F. Géométrie algébrique réelle, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Tome 12 (1987) | MR 949442 | Zbl 0633.14016

[5] Coppens, M.; Keem, C.; Martens, G. Primitive linear series on curves, Manuscripta Mathematica, Tome 77 (1992), pp. 237-264 | Article | MR 1188583 | Zbl 0786.14016

[6] Coppens, M.; Martens, G. Secant space and Clifford’s theorem, Compositio Mathematica, Tome 78 (1991), pp. 193-212 | Numdam | MR 1104787 | Zbl 0741.14035

[7] Eisenbud, D.; Lange, H.; Martens, G.; Schreyer, F.-O. The Clifford dimension of a projective curve, Compositio Mathematica, Tome 72 (1989), pp. 173-204 | Numdam | MR 1030141 | Zbl 0703.14020

[8] Gross, B. H.; Harris, J. Real algebraic curves, Ann. Sci. École Norm. Sup. (4), Tome 14 (1981), pp. 157-182 | Numdam | MR 631748 | Zbl 0533.14011

[9] Hartshorne, R. Algebraic geometry, Springer-Verlag, New York (1977) (Graduate Texts in Mathematics, No. 52) | MR 463157 | Zbl 0367.14001

[10] Huisman, J. Clifford’s inequality for real algebraic curves, Indag. Math., Tome 14 (2003) no. 2, pp. 197-205 | Article | MR 2026814 | Zbl 1063.14074

[11] Monnier, J.-Ph. Divisors on real curves, Adv. Geom., Tome 3 (2003), pp. 339-360 | Article | MR 1997411 | Zbl 1079.14013