Polynomial bounds for the oscillation of solutions of Fuchsian systems
Annales de l'Institut Fourier, Volume 59 (2009) no. 7, p. 2891-2926

We study the problem of placing effective upper bounds for the number of zeroes of solutions of Fuchsian systems on the Riemann sphere. The principal result is an explicit (non-uniform) upper bound, polynomially growing on the frontier of the class of Fuchsian systems of a given dimension n having m singular points. As a function of n,m, this bound turns out to be double exponential in the precise sense explained in the paper.

As a corollary, we obtain a solution of the so-called restricted infinitesimal Hilbert 16th problem, an explicit upper bound for the number of isolated zeroes of Abelian integrals which is polynomially growing as the Hamiltonian tends to the degeneracy locus. This improves the exponential bounds recently established by A. Glutsyuk and Yu. Ilyashenko.

Nous étudions le problème d’une borne supérieure effective sur le nombre des racines isolées des solutions de systèmes de type Fuchs sur la sphère de Riemann. Le résultat principal est une borne explicite non uniforme à croissance polynômiale sur la frontière de l’ensemble des systèmes fuchsiens de dimension n quelconque ayant m singularités. Comme une fonction de n,m, la borne est doublement exponentielle dans le sens précis décrit dans le manuscrit.

Comme corollaire, nous obtenons la solution à croissance polynômiale du problème d’Hilbert infinitésimal restreint, qui améliore les bornes exponentielles récemment obtenues par A. Glutsyuk et Yu. Ilyashenko

DOI : https://doi.org/10.5802/aif.2511
Classification:  34M10,  34C08,  14Q20,  32S40
Keywords: Fuchsian systems, oscillation, zeros, semialgebraic varieties, effective algebraic geometry, monodromy
@article{AIF_2009__59_7_2891_0,
     author = {Binyamini, Gal and Yakovenko, Sergei},
     title = {Polynomial bounds for the oscillation  of solutions of Fuchsian systems},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {59},
     number = {7},
     year = {2009},
     pages = {2891-2926},
     doi = {10.5802/aif.2511},
     mrnumber = {2649342},
     zbl = {pre05689410},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2009__59_7_2891_0}
}
Binyamini, Gal; Yakovenko, Sergei. Polynomial bounds for the oscillation  of solutions of Fuchsian systems. Annales de l'Institut Fourier, Volume 59 (2009) no. 7, pp. 2891-2926. doi : 10.5802/aif.2511. http://www.numdam.org/item/AIF_2009__59_7_2891_0/

[1] Basu, Saugata; Vorobjov, Nicolai On the number of homotopy types of fibres of a definable map, J. Lond. Math. Soc. (2), Tome 76 (2007) no. 3, pp. 757-776 | Article | MR 2377123 | Zbl 1131.14060

[2] Binyamini, G.; Novikov, D.; Yakovenko, S. On the number of zeros of Abelian integrals. A constructive solution of the Infinitesimal Hilbert Sixteenth Problem (2008) (Preprint, ArXiv:0808.2952 [math.DS], p. 1-48, to appear in Inventiones Mathematicae)

[3] Glutsyuk, A. A. Upper bounds of topology of complex polynomials in two variables, Mosc. Math. J., Tome 5 (2005) no. 4, p. 781-828, 972 | MR 2266460 | Zbl pre05182613

[4] Glutsyuk, A. A. An explicit formula for period determinant, Ann. Inst. Fourier (Grenoble), Tome 56 (2006) no. 4, pp. 887-917 | Article | Numdam | MR 2266882 | Zbl 1140.32011

[5] Glutsyuk, A. A.; Ilyashenko, Y. The restricted infinitesimal Hilbert 16th problem, Dokl. Akad. Nauk, Tome 407 (2006) no. 2, pp. 154-159 | MR 2348308

[6] Glutsyuk, A. A.; Ilyashenko, Y. Restricted version of the infinitesimal Hilbert 16th problem, Mosc. Math. J., Tome 7 (2007) no. 2, p. 281-325, 351 | MR 2337884 | Zbl 1134.34019

[7] Grigor’Ev, D. Y.; Vorobjov, N. N. Jr. Solving systems of polynomial inequalities in subexponential time, J. Symbolic Comput., Tome 5 (1988) no. 1-2, pp. 37-64 | Article | MR 949112 | Zbl 0662.12001

[8] Grigoriev, A. Singular perturbations and zeros of Abelian integrals, Rehovot, Weizmann Institute of Science (2001) (Ph. D. Thesis)

[9] Grigoriev, A. Uniform asymptotic bound on the number of zeros of Abelian integrals (2003) (Preprint ArXiv:math.DS/0305248)

[10] Heintz, Joos; Roy, Marie-Françoise; Solernó, Pablo Sur la complexité du principe de Tarski-Seidenberg, Bull. Soc. Math. France, Tome 118 (1990) no. 1, pp. 101-126 | Numdam | MR 1077090 | Zbl 0767.03017

[11] Ilyashenko, Y. Centennial history of Hilbert’s 16th problem, Bull. Amer. Math. Soc. (N.S.), Tome 39 (2002) no. 3, p. 301-354 (electronic) | Article | MR 1898209 | Zbl 1004.34017

[12] Ilyashenko, Y. Some open problems in real and complex dynamical systems, Nonlinearity, Tome 21 (2008) no. 7, p. T101-T107 | Article | MR 2425322 | Zbl 1183.37016 | Zbl pre05305649

[13] Ilyashenko, Y.; Yakovenko, S. Lectures on Analytic Differential Equations, American Mathematical Society, Providence, RI, Graduate Studies in Mathematics, Tome 86 (2008) | MR 2363178 | Zbl 1186.34001 | Zbl pre05223651

[14] Khovanskiĭ, A. G. Real analytic manifolds with the property of finiteness, and complex abelian integrals, Funktsional. Anal. i Prilozhen., Tome 18 (1984) no. 2, pp. 40-50 | Article | MR 745698 | Zbl 0584.32016

[15] Khovanskiĭ, A. G. Fewnomials, American Mathematical Society, Providence, RI, Translations of Mathematical Monographs, Tome 88 (1991) (Translated from the Russian by Smilka Zdravkovska) | MR 1108621 | Zbl 0728.12002

[16] Levin, B. Ja. Distribution of zeros of entire functions, American Mathematical Society, Providence, R.I., Translations of Mathematical Monographs, Tome 5 (1980) (Translated from the Russian by R. P. Boas, J. M. Danskin, F. M. Goodspeed, J. Korevaar, A. L. Shields and H. P. Thielman) | MR 589888 | Zbl 0152.06703

[17] Novikov, D. Systems of linear ordinary differential equations with bounded coefficients may have very oscillating solutions, Proc. Amer. Math. Soc., Tome 129 (2001) no. 12, p. 3753-3755 (electronic) | Article | MR 1860513 | Zbl 0983.34019

[18] Novikov, D.; Yakovenko, S. Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems, Electron. Res. Announc. Amer. Math. Soc., Tome 5 (1999), p. 55-65 (electronic) | Article | MR 1679454 | Zbl 0922.58076

[19] Novikov, D.; Yakovenko, S. Redundant Picard-Fuchs system for abelian integrals, J. Differential Equations, Tome 177 (2001) no. 2, pp. 267-306 | Article | MR 1876646 | Zbl 1011.37042

[20] Roitman, M.; Yakovenko, S. On the number of zeros of analytic functions in a neighborhood of a Fuchsian singular point with real spectrum, Math. Res. Lett., Tome 3 (1996) no. 3, pp. 359-371 | MR 1397684 | Zbl 0871.34005

[21] Varchenko, A. N. Estimation of the number of zeros of an abelian integral depending on a parameter, and limit cycles, Funktsional. Anal. i Prilozhen., Tome 18 (1984) no. 2, pp. 14-25 | Article | MR 745696 | Zbl 0545.58038

[22] Yakovenko, Sergei On functions and curves defined by ordinary differential equations, The Arnoldfest (Toronto, ON, 1997), Amer. Math. Soc., Providence, RI (Fields Inst. Commun.) Tome 24 (1999), pp. 497-525 | MR 1733590 | Zbl 0949.34023

[23] Yakovenko, Sergei Quantitative theory of ordinary differential equations and the tangential Hilbert 16th problem, On finiteness in differential equations and Diophantine geometry, Amer. Math. Soc., Providence, RI (CRM Monogr. Ser.) Tome 24 (2005), pp. 41-109 | MR 2180125 | Zbl 1104.34025

[24] Yakovenko, Sergei Oscillation of linear ordinary differential equations: on a theorem of A. Grigoriev, J. Dyn. Control Syst., Tome 12 (2006) no. 3, pp. 433-449 | Article | MR 2233029 | Zbl 1131.34028