Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature
Annales de l'Institut Fourier, Volume 59 (2009) no. 2, p. 563-573

In this paper, we prove two generalized versions of the Cheeger-Gromoll splitting theorem via the non-negativity of the Bakry-Émery Ricci curavture on complete Riemannian manifolds.

Dans cet article, nous obtenons deux généralisations du théorème de scindage de Cheeger-Gromoll sur les variétés riemanniennes complètes à courbure de Ricci non-négative au sens de Bakry-Émery.

DOI : https://doi.org/10.5802/aif.2440
Classification:  53C20,  53C25
Keywords: Busemann function, splitting theorem, Bakry-Émery Ricci curvature
@article{AIF_2009__59_2_563_0,
     author = {Fang, Fuquan and Li, Xiang-Dong and Zhang, Zhenlei},
     title = {Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {59},
     number = {2},
     year = {2009},
     pages = {563-573},
     doi = {10.5802/aif.2440},
     mrnumber = {2521428},
     zbl = {1166.53023},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2009__59_2_563_0}
}
Fang, Fuquan; Li, Xiang-Dong; Zhang, Zhenlei. Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature. Annales de l'Institut Fourier, Volume 59 (2009) no. 2, pp. 563-573. doi : 10.5802/aif.2440. http://www.numdam.org/item/AIF_2009__59_2_563_0/

[1] Bakry, D.; Émery, Michel Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Springer, Berlin (Lecture Notes in Math.) Tome 1123 (1985), pp. 177-206 | Numdam | MR 889476 | Zbl 0561.60080

[2] Bakry, Dominique L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory (Saint-Flour, 1992), Springer, Berlin (Lecture Notes in Math.) Tome 1581 (1994), pp. 1-114 | MR 1307413 | Zbl 0856.47026

[3] Bakry, Dominique; Qian, Zhongmin Volume comparison theorems without Jacobi fields, Current trends in potential theory, Theta, Bucharest (Theta Ser. Adv. Math.) Tome 4 (2005), pp. 115-122 | MR 2243959

[4] Besse, Arthur L. Einstein manifolds, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Tome 10 (1987) | MR 867684 | Zbl 0613.53001

[5] Calabi, E. An extension of E. Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J., Tome 25 (1958), pp. 45-56 | Article | MR 92069 | Zbl 0079.11801

[6] Cheeger, Jeff; Gromoll, Detlef The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry, Tome 6 (1971/72), pp. 119-128 | MR 303460 | Zbl 0223.53033

[7] Eschenburg, Jost; Heintze, Ernst An elementary proof of the Cheeger-Gromoll splitting theorem, Ann. Global Anal. Geom., Tome 2 (1984) no. 2, pp. 141-151 | Article | MR 777905 | Zbl 0548.53041

[8] Fernández-López, M.; García-Río, E. A remark on compact Ricci solitons, Math. Ann., Tome 340 (2008) no. 4, pp. 893-896 | Article | MR 2372742 | Zbl 1132.53023

[9] Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 224 (1983) | MR 737190 | Zbl 0562.35001

[10] Gromov, Mikhael Structures métriques pour les variétés riemanniennes, CEDIC, Paris, Textes Mathématiques [Mathematical Texts], Tome 1 (1981) (Edited by J. Lafontaine and P. Pansu) | MR 682063 | Zbl 0509.53034

[11] Gromov, Misha Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 152 (1999) (Based on the 1981 French original [ MR0682063 (85e:53051)], With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates) | MR 1699320 | Zbl 0953.53002

[12] Li, Xiang-Dong Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. (9), Tome 84 (2005) no. 10, pp. 1295-1361 | MR 2170766 | Zbl 1082.58036

[13] Li, Xue-Mei On extensions of Myers’ theorem, Bull. London Math. Soc., Tome 27 (1995) no. 4, pp. 392-396 | Article | MR 1335292 | Zbl 0835.60056

[14] Lichnerowicz, André Variétés riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris Sér. A-B, Tome 271 (1970), p. A650-A653 | MR 268812 | Zbl 0208.50003

[15] Lott, John Some geometric properties of the Bakry-Émery-Ricci tensor, Comment. Math. Helv., Tome 78 (2003) no. 4, pp. 865-883 | Article | MR 2016700 | Zbl 1038.53041

[16] Perelman, G. The entropy forumla for the Ricci flow and its geometric applications (http://arXiv.org/abs/maths/0211159) | Zbl 1130.53001

[17] Qian, Zhongmin Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2), Tome 48 (1997) no. 190, pp. 235-242 | Article | MR 1458581 | Zbl 0902.53032

[18] Schoen, R.; Yau, S.-T. Lectures on differential geometry, International Press, Cambridge, MA, Conference Proceedings and Lecture Notes in Geometry and Topology, I (1994) (Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu, Translated from the Chinese by Ding and S. Y. Cheng, Preface translated from the Chinese by Kaising Tso) | MR 1333601 | Zbl 0830.53001

[19] Wei, Guofang; Wylie, William C. Comparison Geometry for the Bakry-Émery Ricci Tensor (arXiv:math.DG/0706.1120v1)

[20] Wylie, William Complete shrinking Ricci solitons have finite fundamental group, Proc. Amer. Math. Soc., Tome 136 (2008) no. 5, pp. 1803-1806 | Article | MR 2373611 | Zbl 1152.53057

[21] Zhu, Shunhui The comparison geometry of Ricci curvature, Comparison geometry (Berkeley, CA, 1993–94), Cambridge Univ. Press, Cambridge (Math. Sci. Res. Inst. Publ.) Tome 30 (1997), pp. 221-262 | MR 1452876 | Zbl 0896.53036