An o-minimal structure which does not admit C cellular decomposition  [ Une structure o-minimale sans décomposition cellulaire lisse ]
Annales de l'Institut Fourier, Tome 59 (2009) no. 2, p. 543-562
Nous présentons un exemple de structure o-minimale n’admettant pas la propriété de décomposition cellulaire C . Pour ce faire, nous construisons une fonction H dont le germe en 0 admet un représentant C k pour tout entier k, mais n’admet aucun représentant C . Une condition de transcendance sur les coefficients de la série de Taylor de H assure alors la quasi-analyticité de certaines algèbres différentielles 𝒜 n (H) engendrées par H. La o-minimalité de la structure engendrée par H est enfin déduite de cette quasi-analyticité.
We present an example of an o-minimal structure which does not admit C cellular decomposition. To this end, we construct a function H whose germ at the origin admits a C k representative for each integer k, but no C representative. A number theoretic condition on the coefficients of the Taylor series of H then insures the quasianalyticity of some differential algebras 𝒜 n (H) induced by H. The o-minimality of the structure generated by H is deduced from this quasianalyticity property.
DOI : https://doi.org/10.5802/aif.2439
Classification:  03C64 57-99 26A27 57R45
Mots clés: o-minimal, decomposition cellulaire lisse
@article{AIF_2009__59_2_543_0,
     author = {Le Gal, Olivier and Rolin, Jean-Philippe},
     title = {An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {59},
     number = {2},
     year = {2009},
     pages = {543-562},
     doi = {10.5802/aif.2439},
     mrnumber = {2521427},
     zbl = {1193.03065},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2009__59_2_543_0}
}
Le Gal, Olivier; Rolin, Jean-Philippe. An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition. Annales de l'Institut Fourier, Tome 59 (2009) no. 2, pp. 543-562. doi : 10.5802/aif.2439. http://www.numdam.org/item/AIF_2009__59_2_543_0/

[1] Bierstone, Edward; Milman, Pierre D. Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. (1988) no. 67, pp. 5-42 | Article | Numdam | MR 972342 | Zbl 0674.32002

[2] Denef, J.; Van Den Dries, L. p-adic and real subanalytic sets, Ann. of Math. (2), Tome 128 (1988) no. 1, pp. 79-138 | Article | MR 951508 | Zbl 0693.14012

[3] Van Den Dries, Lou Tame topology and o-minimal structures, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series, Tome 248 (1998) | MR 1633348 | Zbl 0953.03045

[4] Van Den Dries, Lou; Speissegger, Patrick The real field with convergent generalized power series, Trans. Amer. Math. Soc., Tome 350 (1998) no. 11, pp. 4377-4421 | Article | MR 1458313 | Zbl 0905.03022

[5] Van Den Dries, Lou; Speissegger, Patrick The field of reals with multisummable series and the exponential function, Proc. London Math. Soc. (3), Tome 81 (2000) no. 3, pp. 513-565 | Article | MR 1781147 | Zbl 1062.03029

[6] Gabrielov, Andrei Complements of subanalytic sets and existential formulas for analytic functions, Invent. Math., Tome 125 (1996) no. 1, pp. 1-12 | Article | MR 1389958 | Zbl 0851.32009

[7] Malgrange, Bernard Idéaux de fonctions différentiables et division des distributions, Distributions, Ed. Éc. Polytech., Palaiseau (2003), pp. 1-21 (With an Appendix: “Stanisław Łojasiewicz (1926–2002)”) | MR 2065138

[8] Mandelbrojt, S. Sur les fonctions indéfiniment dérivables, Acta Math., Tome 72 (1940), pp. 15-29 | Article | MR 1783

[9] Rolin, J.-P.; Speissegger, P.; Wilkie, A. J. Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc., Tome 16 (2003) no. 4, p. 751-777 (electronic) | Article | MR 1992825 | Zbl 1095.26018

[10] Wilkie, A. J. A theorem of the complement and some new o-minimal structures, Selecta Math. (N.S.), Tome 5 (1999) no. 4, pp. 397-421 | Article | MR 1740677 | Zbl 0948.03037