Hamidoune, Yahya O.
Some additive applications of the isoperimetric approach  [ Quelques applications additives de la méthode isopérimétrique ]
Annales de l'institut Fourier, Tome 58 (2008) no. 6 , p. 2007-2036
MR 2473627 | Zbl 1173.05019
doi : 10.5802/aif.2404
URL stable : http://www.numdam.org/item?id=AIF_2008__58_6_2007_0

Classification:  05C25,  20D60,  11B75,  05C40
Mots clés: somme de Minkowski, graphe de Cayley, problème inverse
Soient G un groupe et X un sous-ensemble fini de G. La méthode isopérimétrique étudie la fonction objective |(XB)X|, définie sur les parties X telles que |X|k et |G(XB)|k, où XB est le produit de X par B. Les inégalités additives découlent de la structure des ensembles où cette fonction atteint sa valeur minimale. Nous présentons dans ce mémoire les bases de cette méthode et certaines de ses applications. Nous obtenons quelques nouveaux résultats et des courtes preuves de résultats connus. Certains des résultats obtenus dans ce travail seront appliqués dans un futur mémoire afin d’améliorer les théorèmes de structure de Kempermann.
Let G be a group and let X be a finite subset. The isoperimetric method investigates the objective function |(XB)X|, defined on the subsets X with |X|k and |G(XB)|k, where XB is the product of X by B. In this paper we present all the basic facts about the isoperimetric method. We improve some of our previous results and obtain generalizations and short proofs for several known results. We also give some new applications. Some of the results obtained here will be used in coming papers to improve Kempermann structure Theory.

Bibliographie

[1] Arad, Z.; Muzychuk, M. Order evaluation of products of subsets in finite groups and its applications. II., Trans. Amer. Math. Soc., 349 (1997) no. 11, p. 4401–4414 Article  MR 1407477 | Zbl 0895.20022

[2] Balandraud, E. Un nouveau point de vue isopérimétrique appliqué au théorème de Kneser (2005) (Preprint)

[3] Brailowski, L. V.; Freiman, G. A. On a product of finite subsets in a torsion free group, J. Algebra, 130 (1990), p. 462–476 Article  MR 1051314 | Zbl 0697.20019

[4] Cauchy, A. Recherches sur les nombres, J. École polytechnique, 9 (1813), p. 99-116

[5] Chowla, S. A theorem on the addition of residue classes: applications to the number Γ(k) in Waring’s problem, Proc. Indian Acad. Sc., 2 (1935), p. 242–243

[6] Davenport, H. On the addition of residue classes, J. London Math. Soc., 10 (1935), p. 30–32 Article 

[7] Deshouillers, J. M.; Freiman, G. A. A step beyond Kneser’s Theorem, Proc. London Math. Soc., 86 (2003) no. 3, p. 1–28 Article  Zbl 1032.11009

[8] Diderrich, G. T. On Kneser’s addition theorem in groups, Proc. Amer. Math. Soc. (1973), p. 443–451 Zbl 0266.20041

[9] Dirac, G. A. Extensions of Menger’s theorem, J. Lond. Math. Soc., 38 (1963), p. 148161 Article  Zbl 0112.38606

[10] Dixmier, J. Proof of a conjecture by Erdös, Graham concerning the problem of Frobenius, J. number Theory, 34 (1990), p. 198–209 Article  MR 1042493 | Zbl 0695.10012

[11] Dyson, F. J. A theorem on the densities of sets of integers, J. London Math. Soc., 20 (1945), p. 8–14 Article  MR 15074 | Zbl 0061.07408

[12] Erdős, P.; Heilbronn, H. On the Addition of residue classes mod p, Acta Arith., 9 (1964), p. 149–159 MR 166186 | Zbl 0156.04801

[13] Green, B.; Ruzsa, I. Z. Sets with small sumset and rectification, Bull. London Math. Soc., 38 (2006) no. 1, p. 43–52 Article  MR 2201602 | Zbl pre05014332

[14] Hamidoune, Y. O. Beyond Kemperman’s Structure Theory: The isoperimetric approach (In preparation)

[15] Hamidoune, Y. O. Sur les atomes d’un graphe orienté, C.R. Acad. Sc. Paris A, 284 (1977), p. 1253–1256 Zbl 0352.05035

[16] Hamidoune, Y. O. An application of connectivity theory in graphs to factorizations of elements in groups, Europ. J. of Combinatorics, 2 (1981), p. 349–355 MR 638410 | Zbl 0473.05032

[17] Hamidoune, Y. O. Quelques problèmes de connexité dans les graphes orientés, J. Comb. Theory, B 30 (1981), p. 1–10 MR 609588 | Zbl 0475.05039

[18] Hamidoune, Y. O. On the connectivity of Cayley digraphs, Europ. J. Combinatorics, 5 (1984), p. 309–312 MR 782052 | Zbl 0561.05028

[19] Hamidoune, Y. O. On a subgroup contained in words with a bounded length, Discrete Math., 103 (1992), p. 171–176 Article  MR 1171314 | Zbl 0773.20004

[20] Hamidoune, Y. O. An isoperimetric method in additive theory, J. Algebra, 179 (1996) no. 2, p. 622–630 Article  MR 1367866 | Zbl 0842.20029

[21] Hamidoune, Y. O. On subsets with a small sum in abelian groups I: The Vosper property, Europ. J. of Combinatorics, 18 (1997), p. 541–556 Article  MR 1455186 | Zbl 0883.05065

[22] Hamidoune, Y. O. On small subset product in a group. Structure Theory of set-addition, Astérisque, 258 (1999), p. 281–308 (xiv-xv) MR 1701204 | Zbl 0945.20011

[23] Hamidoune, Y. O. Some results in Additive number Theory I: The critical pair Theory, Acta Arith., 96 (2000) no. 2, p. 97–119 Article  MR 1814447 | Zbl 0985.11011

[24] Hamidoune, Y. O. Hyper-atoms and the Kemperman’s critical pair Theory (2007) (Preprint)

[25] Hamidoune, Y. O.; Rødseth, Ø. J. On bases for σ-finite groups, Math. Sc., 78 (1996) no. 2, p. 246–254 MR 1414651 | Zbl 0877.11007

[26] Hamidoune, Y. O.; Rødseth, Ø. J. An inverse theorem modulo p, Acta Arithmetica, 92 (2000), p. 251–262 MR 1752029 | Zbl 0945.11003

[27] Hamidoune, Y. O.; Serra, O.; Zémor, G. On the critical pair theory in Abelian groups: Beyond Chowla’s Theorem (2006) (Preprint)

[28] Hamidoune, Y. O.; Serra, O.; Zémor, G. On the critical pair theory in /p, Acta Arith., 121 (2006) no. 2, p. 99–115 Article  MR 2216136 | Zbl pre05024060

[29] Hegyvári, N. On iterated difference sets in groups, Period. Math. Hungar., 43 (2001) no. 1-2, p. 105–110 MR 1830569 | Zbl 0980.11016

[30] Jin, R. Solution to the inverse problem for upper asymptotic density, J. Reine Angew. Math., 595 (2006), p. 121–165 Article  MR 2244800 | Zbl 1138.11045

[31] Jungić, V.; Licht, J.; Mahdian, M.; Nešetřil, J.; Jaroslav, R.; Radoičić, R. Rainbow arithmetic progressions and anti-Ramsey results. Special issue on Ramsey theory, Combin. Probab. Comput., 12 (2003) no. 5-6, p. 599–620 Article  MR 2037073 | Zbl 1128.11305

[32] Károlyi, G. Cauchy-Davenport theorem in group extensions, Enseign. Math., (2)51 (2005) no. 3-4, p. 239–254 MR 2214888 | Zbl 1111.20026

[33] Kemperman, J. H. B. On complexes in a semigroup, Nederl. Akad. Wetensch. Proc. Ser. A, 59 (1956) no. 18, p. 247–254 (Indag. Math.) MR 85263 | Zbl 0072.25605

[34] Kemperman, J. H. B. On small sumsets in Abelian groups, Acta Math., 103 (1960), p. 66–88 Article  MR 110747 | Zbl 0108.25704

[35] Kneser, M. Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z., 58 (1953), p. 459–484 Article  MR 56632 | Zbl 0051.28104

[36] Kneser, M. Summenmengen in lokalkompakten abelesche Gruppen, Math. Zeit., 66 (1956), p. 88–110 Article  MR 81438 | Zbl 0073.01702

[37] Mann, H. B. An addition theorem for sets of elements of an Abelian group, Proc. Amer. Math. Soc., 4 (1953), p. 423 MR 55334 | Zbl 0050.25703

[38] Mann, H. B. Addition Theorems, R.E. Krieger, New York (1976) MR 424744

[39] Menger, K. Zur allgemeinen Kurventhoerie, Fund. Math., 10 Karl (1927), p. 96–115

[40] Nathanson, M. B.; Springer Additive Number Theory. Inverse problems and the geometry of sumsets, Grad. Texts in Math., 165 (1996) MR 1477155 | Zbl 0859.11003

[41] Nikolov, N.; Segal, D. On finitely generated profinite groups. I. Strong completeness and uniform bounds, Ann. of Math., (2) 165 (2007) no. 1, p. 171–238 Article  MR 2276769 | Zbl 1126.20018

[42] Nikolov, N.; Segal, D. On finitely generated profinite groups. II. Products in quasisimple groups, Ann. of Math., (2) 165 (2007) no. 1, p. 239–273 Article  MR 2276770 | Zbl 1126.20018

[43] Olson, J. E. Sums of sets of group elements, Acta Arith., 28 (1975/76) no. 2, p. 147–156 MR 382215 | Zbl 0318.10035

[44] Olson, J. E. On the sum of two sets in a group, J. Number Theory, 18 (1984), p. 110–120 Article  MR 734442 | Zbl 0524.10043

[45] Olson, J. E. On the symmetric difference of two sets in a group, Europ. J. Combinatorics (1986), p. 43–54 MR 850143 | Zbl 0597.05012

[46] Plagne, A. (k,l)-free sets in /p are arithmetic progressions, Bull. Austral. Math. Soc., 65 (2002) no. 1, p. 137–144 Article  MR 1889388 | Zbl 1034.11057

[47] Pyber, L. Bounded generation and subgroup growth, Bull. London Math. Soc., 34 (2002) no. 1, p. 55–60 Article  MR 1866428 | Zbl 1041.20016

[48] Rødseth, Ø. J. Two remarks on linear forms in non-negative integers, Math. Scand., 51 (1982), p. 193–198 MR 690524 | Zbl 0503.10035

[49] Ruzsa, I. An application of graph theory to additive number theory, Scientia, Ser. A, 3 (1989), p. 97109 MR 2314377 | Zbl 0743.05052

[50] Serra, O. An isoperimetric method for the small sumset problem, Surveys in combinatorics, Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) 327 (2005), p. 119–152 MR 2187737 | Zbl pre05117215

[51] Serra, O.; Zémor, G. On a generalization of a theorem by Vosper, Integers (2000) (0, A10, (electronic)) MR 1771980 | Zbl 0953.11031

[52] Shepherdson, J. C. On the addition of elements of a sequence, J. London Math Soc., 22 (1947), p. 85–88 Article  MR 22866 | Zbl 0029.34402

[53] Szemerédi, E. On a conjecture of Erdös and Heilbronn, Acta Arithmetica, 17 (1970), p. 227–229 MR 268159 | Zbl 0222.10055

[54] Tao, T.; Vu, V. H. Additive Combinatorics, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 105 (2006) MR 2289012 | Zbl 1127.11002

[55] Vosper, G. Addendum to: The critical pairs of subsets of a group of prime order, J. London Math. Soc., 31 (1956), p. 280–282 Article  MR 78368 | Zbl 0072.03402

[56] Vosper, G. The critical pairs of subsets of a group of prime order, J. London Math. Soc., 31 (1956), p. 200–205 Article  MR 77555 | Zbl 0072.03402

[57] Zémor, G. On positive and negative atoms of Cayley digraphs, Discrete Appl. Math., 23 (1989) no. 2, p. 193–195 Article  MR 996549 | Zbl 0674.05032