An interpolation theorem in toric varieties  [ Un théorème d’interpolation dans les variétés toriques ]
Annales de l'Institut Fourier, Tome 58 (2008) no. 4, p. 1371-1381
Dans la lignée d’un théorème de Wood, on donne des conditions nécessaires et suffisantes pour qu’une famille de germes d’hypersurfaces analytiques d’une variété torique projective lisse X s’interpole par une hypersurface algébrique de classe de Picard donnée.
In the spirit of a theorem of Wood, we give necessary and sufficient conditions for a family of germs of analytic hypersurfaces in a smooth projective toric variety X to be interpolated by an algebraic hypersurface with a fixed class in the Picard group of X.
DOI : https://doi.org/10.5802/aif.2387
Classification:  14M25,  32B10
Mots clés: variétés toriques, interpolation, trace, résidus, résultants
@article{AIF_2008__58_4_1371_0,
     author = {Weimann, Martin},
     title = {An interpolation theorem in toric varieties},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {58},
     number = {4},
     year = {2008},
     pages = {1371-1381},
     doi = {10.5802/aif.2387},
     mrnumber = {2427963},
     zbl = {pre05303678},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2008__58_4_1371_0}
}
Weimann, Martin. An interpolation theorem in toric varieties. Annales de l'Institut Fourier, Tome 58 (2008) no. 4, pp. 1371-1381. doi : 10.5802/aif.2387. http://www.numdam.org/item/AIF_2008__58_4_1371_0/

[1] Abel, N. H. Mémoire sur une propriété générale d’une classe trés étendue de fonctions trancendantes, note présentée à L’Académie des sciences à Paris le 30 Octobre 1826, Oeuvres complètes de Niels Henrik Abel, Christiania, Tome 1 (1881), pp. 145-211

[2] Andersson, M. Residue currents and ideal of holomorphic functions, Bull. Sci. math. (2004) no. 128, pp. 481-512 | Article | MR 2074610 | Zbl 1086.32005

[3] Berenstein, C. A.; Yger, A. Residue calculus and effective Nullstellensatz, in American Journal of Mathematics, Tome 121 (1999) no. 4, pp. 723-796 | Article | MR 1704477 | Zbl 0944.14002

[4] Bernstein, D. The number of roots of a system of equations, Funct. Anal. Appl., Tome 9 (1975) no. 2, pp. 183-185 | MR 435072 | Zbl 0328.32001

[5] Bloch, S.; Gieseker, D. The positivity of the Chern Classes of an ample Vector Bundle, Inventiones math., Tome 12 (1971), pp. 112-117 | Article | MR 297773 | Zbl 0212.53502

[6] Cattani, E.; Dickenstein, A. A global view of residues in the torus, Journal of Pure and Applied Algebra, Tome 117 & 118 (1997), pp. 119-144 | Article | MR 1457836 | Zbl 0899.14024

[7] Danilov, V. The geometry of toric varieties, Russian Math. Surveys, Tome 33 (1978), pp. 97-154 | Article | MR 495499 | Zbl 0425.14013

[8] Ewald, G. Combinatorial convexity and algebraic geometry, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 168 (1996) | MR 1418400 | Zbl 0869.52001

[9] Fulton, W. Introduction to toric varieties, Princeton U. Press, Princeton, NJ (1993) | MR 1234037 | Zbl 0813.14039

[10] Gelfand, I. M.; Kapranov, M. M.; Zelevinsky, A. V. Discriminants, resultants, and multidimensional determinants, Birkhauser, Boston, Mathematics: Theory & Applications (1994) | MR 1264417 | Zbl 0827.14036

[11] Griffiths, P. A. Variations on a theorem of Abel, Inventiones math., Tome 35 (1976), pp. 321-390 | Article | MR 435074 | Zbl 0339.14003

[12] Griffiths, P. A.; Harris, J. Principles of Algebraic Geometry, Wiley-Intersciences, Pure and applied mathematics (1978) | MR 507725 | Zbl 0408.14001

[13] Henkin, G.; Passare, M. Abelian differentials on singular varieties and variation on a theorem of Lie-Griffiths, Inventiones math., Tome 135 (1999), pp. 297-328 | Article | MR 1666771 | Zbl 0932.32012

[14] Khovanskii, A. Newton polyedra and the Euler-Jacobi formula, Russian Math. Surveys, Tome 33 (1978), p. 237-238 | Article | MR 526036 | Zbl 0449.14010

[15] Pedersen, P.; Sturmfels, B. Product formulas for resultants and Chow forms, Math. Z., Tome 214 (1993) no. 3, pp. 377-396 | Article | MR 1245200 | Zbl 0792.13006

[16] Shchuplev, A. Toric varieties and residues, Doctoral thesis, Stockholm University (2007)

[17] Vidras, A.; Yger, A. On some generalizations of Jacobi’s residue formula, Ann. scient. Ec. Norm. Sup, 4 ème série, Tome 34 (2001), pp. 131-157 | Numdam | Zbl 0991.32003

[18] Weimann, M. Concavity, Abel-transform and the Abel-inverse theorem in smooth complete toric varieties (arXiv ref: math.CV/0705.0247)

[19] Weimann, M. La trace en géométrie projective et torique, Thesis, Université Bordeaux (2006)

[20] Weimann, M. Trace et Calcul résiduel : une nouvelle version du théorème d’Abel-inverse et formes abéliennes, Annales de la faculté des sciences de Toulouse Sér. 6, Tome 16 (2007) no. 2, pp. 397-424 | Numdam | Zbl pre05236232

[21] Wood, J. A. A simple criterion for an analytic hypersurface to be algebraic, Duke Mathematical Journal, Tome 51 (1984) no. 1, pp. 235-237 | Article | MR 744296 | Zbl 0584.14021