Riemann-Roch theorem for higher bivariant K-functors  [ Théorème de Riemann-Roch pour les K-foncteurs supérieurs bivariants ]
Annales de l'Institut Fourier, Tome 58 (2008) no. 2, p. 571-601
On définie une transformation naturelle de type Riemann-Roch entre les K-théories algébrique et topologique supérieures bivariantes dans la catégorie des espaces complexes.
One defines a Riemann-Roch natural transformation from algebraic to topological higher bivariant K-theory in the category of complex spaces.
DOI : https://doi.org/10.5802/aif.2361
Classification:  19L10,  19D99
Mots clés: faisceau parfait, espace classifié de la catégorie, K-groupes
@article{AIF_2008__58_2_571_0,
     author = {Levy, Roni N.},
     title = {Riemann-Roch theorem for higher bivariant K-functors},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {58},
     number = {2},
     year = {2008},
     pages = {571-601},
     doi = {10.5802/aif.2361},
     mrnumber = {2410383},
     zbl = {1164.19001},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2008__58_2_571_0}
}
Levy, Roni N. Riemann-Roch theorem for higher bivariant K-functors. Annales de l'Institut Fourier, Tome 58 (2008) no. 2, pp. 571-601. doi : 10.5802/aif.2361. https://www.numdam.org/item/AIF_2008__58_2_571_0/

[1] Angeniol, B.; Lejeune-Jalabert, M. Calcul différentiel et classes caractéristiques en géométrie algébrique (1985) (Prepublication de l’Institut Fourier, Grenoble) | Zbl 0749.14008

[2] Atiyah, M. F. K-theory, Harvard Univ., Cambridge, Mass. (1965)

[3] Baum, P.; Fulton, W.; Macpherson, R. Riemann-Roch and topological K-theory for singular varieties, Acta Math., Tome 143 (1979), pp. 155-192 | Article | MR 549773 | Zbl 0474.14004

[4] Forster, O.; Knorr, K. Ein Beweis des grauertsche Bildgarbensatzes nach ideen von B. Malgrange, Manuscripta Math., Tome 5 (1971), pp. 19-44 | Article | MR 308437 | Zbl 0242.32008

[5] Fulton, William; Macpherson, Robert Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc., Tome 31 (1981) no. 243, pp. vi+165 | MR 609831 | Zbl 0467.55005

[6] Gillet, H. Riemann-Roch theorems for higher algebraic K-theory, Adv. Math., Tome 40 (1981), pp. 203-289 | Article | MR 624666 | Zbl 0478.14010

[7] Gillet, H. Comparing algebraic and topological K-theory, Lect. Notes in Math., Tome 1491 (1992), pp. 54-99

[8] Godement, R. Topologie algebraique et theorie de faisceaux, Hermann, Paris (1958) | MR 102797 | Zbl 0080.16201

[9] Levy, R. Riemann-Roch theorem for complex spaces, Acta Mathematica, Tome 158 (1987), pp. 149-188 | Article | MR 892589 | Zbl 0627.32004

[10] Quillen, D. Higher algebraic K-theory I, Springer Lect. Notes in Math., Tome 341 (1972), pp. 85-148 | Article | MR 338129 | Zbl 0292.18004

[11] Thomason, R. W.; Trobaugh, T. Higher algebraic K-theory of schemes and of derived categories, The Grothendieck festschrift III, Progress in Math. v., Tome 88 (1990), pp. 247-437 (Birkhauser) | Article | MR 1106918

[12] Waldhausen, F. Algebraic K-theory of spaces, Springer Lect. Notes in Math., Tome 1126 (1985), pp. 318-419 | Article | MR 802796 | Zbl 0579.18006