On construit une fonction différentiable () telle que l’ensemble est non vide et sa dimension de Hausdorff est . C’est une réponse à une question posée par Z. Buczolich.
We construct a differentiable function () such that the set is a nonempty set of Hausdorff dimension . This answers a question posed by Z. Buczolich.
Classification : 26B05, 28A75
Mots clés : propriété de Denjoy-Clarkson, gradient, mesure de Hausdorff, jeu infini
@article{AIF_2008__58_2_405_0, author = {Zelen\'y, Miroslav}, title = {The Denjoy-Clarkson property with respect to Hausdorff measures for the gradient mapping of functions of several variables}, journal = {Annales de l'Institut Fourier}, pages = {405--428}, publisher = {Association des Annales de l'institut Fourier}, volume = {58}, number = {2}, year = {2008}, doi = {10.5802/aif.2356}, mrnumber = {2410378}, zbl = {1154.26016}, language = {en}, url = {www.numdam.org/item/AIF_2008__58_2_405_0/} }
Zelený, Miroslav. The Denjoy-Clarkson property with respect to Hausdorff measures for the gradient mapping of functions of several variables. Annales de l'Institut Fourier, Tome 58 (2008) no. 2, pp. 405-428. doi : 10.5802/aif.2356. http://www.numdam.org/item/AIF_2008__58_2_405_0/
[1] Differentiation of real functions, CRM Monograph Series, Volume 5, American Mathematical Society, Providence, RI, 1994 | MR 1274044 | Zbl 0796.26004
[2] The -dimensional gradient has the 1-dimensional Denjoy-Clarkson property, Real Anal. Exchange, Volume 18 (1992-93), pp. 221-224 | MR 1205514 | Zbl 0783.26010
[3] Another note on the gradient problem of C. E. Weil, Real Anal. Exchange, Volume 22 (1996-97), pp. 775-784 | MR 1460988 | Zbl 0940.26011
[4] Solution to the gradient problem of C. E. Weil, Rev. Mat. Iberoamericana, Volume 21 (2005), pp. 889-910 | EuDML 41954 | MR 2231014 | Zbl 1116.26007
[5] A property of derivatives, Bull. Amer. Math. Soc., Volume 53 (1947), p. 124-125 | Article | MR 19712 | Zbl 0032.27102
[6] Sur une proprieté des fonctions dérivées, Enseignement Math., Volume 18 (1916), pp. 320-328 | JFM 46.0381.05
[7] Infinite games, Banach space geometry and the eikonal equation, Proc. Lond. Math. Soc. (3), Volume 95 (2007) no. 1, pp. 49-68 | Article | MR 2329548 | Zbl 1163.91007
[8] General Topology, Heldermann Verlag, Berlin, 1989 | MR 1039321 | Zbl 0684.54001
[9] A note on the gradient problem, Real Anal. Exchange, Volume 22 (1996-97), pp. 225-235 | MR 1433610 | Zbl 0879.26041
[10] The Darboux property for gradients, Real Anal. Exchange, Volume 22 (1996/97) no. 1, pp. 167-173 | MR 1433604 | Zbl 0879.26042
[11] A note on Buczolich’s solution of the Weil gradient problem: a construction based on an infinite game, Acta Math. Hungar., Volume 113 (2006), pp. 145-158 | Article | Zbl 05150231
[12] Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, Volume 44, Cambridge University Press, Cambridge, 1995 | MR 1333890 | Zbl 0819.28004
[13] Query 1, Real Anal. Exchange, Volume 16 (1990-91), pp. 373