Open books on contact five-manifolds
[Livres ouverts sur les variétés de contact de dimension cinq]
Annales de l'Institut Fourier, Tome 58 (2008) no. 1, pp. 139-157.

En utilisant des techniques de livres ouverts, nous donnons une autre démonstration d’un théorème de Geiges sur l’existence de structures de contact sur des variétés de dimension cinq. Ce théorème affirme que les variétés simplement connexes de dimension cinq admettent une structure de contact dans toute classe d’homotopie de structures presque de contact.

By using open book techniques we give an alternative proof of a theorem about the existence of contact structures on five-manifolds due to Geiges. The theorem asserts that simply-connected five-manifolds admit a contact structure in every homotopy class of almost contact structures.

DOI : https://doi.org/10.5802/aif.2347
Classification : 53D35,  57R17
Mots clés : topologie de contact, livres ouverts
@article{AIF_2008__58_1_139_0,
     author = {van Koert, Otto},
     title = {Open books on contact five-manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {139--157},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {1},
     year = {2008},
     doi = {10.5802/aif.2347},
     mrnumber = {2401219},
     zbl = {1143.53078},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2347/}
}
van Koert, Otto. Open books on contact five-manifolds. Annales de l'Institut Fourier, Tome 58 (2008) no. 1, pp. 139-157. doi : 10.5802/aif.2347. http://www.numdam.org/articles/10.5802/aif.2347/

[1] A’Campo, N. Feuilletages de codimension 1 sur des variétés de dimension 5, C. R. Acad. Sci. Paris Sér. A-B, Volume 273 (1971), p. A603-A604 | Zbl 0221.57009

[2] Barden, D. Simply connected five-manifolds, Ann. of Math. (2), Volume 82 (1965), pp. 365-385 | Article | MR 184241 | Zbl 0136.20602

[3] Geiges, H. Contact structures on 1-connected 5-manifolds, Mathematika, Volume 38 (1991) no. 2, pp. 303-311 | Article | MR 1147828 | Zbl 0724.57017

[4] Giroux, E.; Mohsen, J. Contact structures and symplectic fibrations over the circle (lecture notes)

[5] Gompf, R. Handlebody construction of Stein surfaces, Ann. of Math. (2), Volume 148 (1998) no. 2, pp. 619-693 | Article | MR 1668563 | Zbl 0919.57012

[6] Gompf, R.; Stipsicz, A. 4 -manifolds and Kirby calculus, Graduate Studies in Mathematics, 20, American Mathematical Society, Providence, RI, 1999 | MR 1707327 | Zbl 0933.57020

[7] Hirzebruch, F.; Mayer, K. O ( n ) -Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Mathematics, No. 57, Springer-Verlag, Berlin, 1968 | MR 229251 | Zbl 0172.25304

[8] Pham, F. Formules de Picard-Lefschetz généralisées et ramification des intégrales, Bull. Soc. Math. France, Volume 93 (1965), pp. 333-367 | Numdam | MR 195868 | Zbl 0192.29701

[9] Randell, R. The homology of generalized Brieskorn manifolds, Topology, Volume 14 (1975) no. 4, pp. 347-355 | Article | MR 413149 | Zbl 0317.57012

[10] Thurston, W.; Winkelnkemper, H. On the existence of contact forms, Proc. Amer. Math. Soc., Volume 52 (1975), pp. 345-347 | Article | MR 375366 | Zbl 0312.53028

[11] Wang, H-C. Homology of fibre bundles Duke, Math Journal , Volume 16 (1949), pp. 33-38 | MR 28580 | Zbl 0033.30801