Spectrum of the Laplace operator and periodic geodesics: thirty years after
Annales de l'Institut Fourier, Volume 57 (2007) no. 7, p. 2429-2463

What is called the “Semi-classical trace formula” is a formula expressing the smoothed density of states of the Laplace operator on a compact Riemannian manifold in terms of the periodic geodesics. Mathematical derivation of such formulas were provided in the seventies by several authors. The main goal of this paper is to state the formula and to give a self-contained proof independent of the difficult use of the global calculus of Fourier Integral Operators. This proof is close in the spirit of the first proof given in the authors thesis. It uses the time-dependent Schrödinger equation, some facts about the geodesic flow, the stationary phase approximation and the metaplectic representation as a computational tool.

On appelle « Formule de trace semi-classique » une formule exprimant la densité d’état régularisée du laplacien d’une variété riemannienne compacte en termes de ses géodésiques périodiques. Des preuves de telles formules ont été données par plusieurs auteurs dans les années 70. Le but principal de cet article est de présenter cette formule et d’en donner une preuve complète et indépendante du difficile calcul global des opérateurs intégraux de Fourier. Cette preuve est d’un esprit assez proche de celle de la thèse de l’auteur. Elle utilise l’équation de Schrödinger dépendant du temps, des propriétés des géodésiques, la méthode de la phase stationnaire et la représentation métaplectique comme outil de calcul.

DOI : https://doi.org/10.5802/aif.2339
Classification:  35P20,  53C22,  58J40
Keywords: Laplace operator, semi-classics, symplectic geometry, twist map, trace formula, spectrum, periodic geodesics, metaplectic, determinant
@article{AIF_2007__57_7_2429_0,
     author = {Colin de Verdi\`ere, Yves},
     title = {Spectrum of the Laplace operator and periodic geodesics: thirty years after},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {57},
     number = {7},
     year = {2007},
     pages = {2429-2463},
     doi = {10.5802/aif.2339},
     mrnumber = {2394548},
     zbl = {1142.35057},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2007__57_7_2429_0}
}
Colin de Verdière, Yves. Spectrum of the Laplace operator and periodic geodesics: thirty years after. Annales de l'Institut Fourier, Volume 57 (2007) no. 7, pp. 2429-2463. doi : 10.5802/aif.2339. http://www.numdam.org/item/AIF_2007__57_7_2429_0/

[1] Abraham, R.; Marsden, J. Foundations of Mechanics, Reading, Massachusetts (1978) | MR 515141 | Zbl 0393.70001

[2] Arnold, V. Mathematical Methods of Classical Mechanics, Graduate Texts in Math., Springer, Tome 60 (1989) | MR 997295 | Zbl 0386.70001

[3] Arnold, V.; Varchenko, A.; Goussein-Zade, S. Singularités des applications différentiables, Mir, Moscou (1986)

[4] Balian, R.; Bloch, C. Distribution of eigenfrequencies for the wave equation in a finite domain I, Ann. of Physics, Tome 60 (1970), pp. 401 | Article | MR 270008 | Zbl 0207.40202

[5] Balian, R.; Bloch, C. Distribution of eigenfrequencies for the wave equation in a finite domain II, Ann. of Physics, Tome 64 (1971), pp. 271 | Article | MR 284729 | Zbl 0218.35071

[6] Balian, R.; Bloch, C. Distribution of eigenfrequencies for the wave equation in a finite domain III, Ann. of Physics, Tome 69 (1972), pp. 76 | Article | MR 289962 | Zbl 0226.35070

[7] Balian, R.; Bloch, C. Solution of the Schrödinger equation in terms of classical paths, Ann. of Phys., Tome 85 (1974), pp. 514 | Article | MR 438937 | Zbl 0281.35029

[8] Bates, S.; Weinstein, A. Lectures on the Geometry of Quantization, Berkeley Math. Lecture Notes, Amer. Math. Soc., Tome 8 (1997) | MR 1806388 | Zbl 1049.53061

[9] Bellissard, J.; Al. Transition to Chaos in Classical and Quantum Mechanics, Lecture Notes in Maths, Springer, Tome 1589 (1994) | MR 1323220

[10] Berger, M.; Gauduchon, P.; Mazet, E. Le spectre d’une variété riemannienne compacte, Lecture Notes in Maths, Springer (1971) | Zbl 0223.53034

[11] Berger, Marcel Riemannian geometry during the second half of the twentieth century, American Mathematical Society, University Lecture Series, Tome 17 (2000) (Reprint of the 1998 original) | MR 1729907 | Zbl 0944.53001

[12] Berry, M. V.; Tabor, M. Closed orbits and the regular bound spectrum, Proc. Royal Soc. London Ser. A, Tome 349 (1976), pp. 101-123 | Article | MR 471721

[13] Bogomolny, E.; Pavloff, N.; Schmit, C. Diffractive corrections in the trace formula for polygonal billiards, Phys. Rev. E (3), Tome 61 (2000), pp. 3689-3711 | Article | MR 1788658

[14] Bohigas, O.; Giannoni, M.-J.; Schmit, C. Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett., Tome 52 (1984), pp. 1-4 | Article | MR 730191 | Zbl 1119.81326

[15] Bott, R. On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math., Tome 9 (1956), pp. 171-206 | Article | MR 90730 | Zbl 0074.17202

[16] Brummelhuis, R.; Uribe, A. A trace formula for Schrödinger operators, Comm. Math. Phys., Tome 136 (1991), pp. 567-584 | Article | MR 1099696 | Zbl 0729.35093

[17] Camus, B. Spectral estimates for degenerated critical levels, J. Fourier Anal. Appl., Tome 12 (2006), pp. 455-495 | Article | MR 2267632 | Zbl 05080698

[18] Cassanas, R. A Gutzwiller type formula for a reduced Hamiltonian within the framework of symmetry, C. R. Math. Acad. Sci. Paris, Tome 340 (2005), pp. 21-26 | MR 2112035 | Zbl 02136399

[19] Charbonnel, A.-M.; Popov, G. A semi-classical trace formula for several commuting operators, Comm. Partial Differential Equations, Tome 24 (1999), pp. 283-323 | Article | MR 1672009 | Zbl 0927.35138

[20] Chazarain, J. Formule de Poisson pour les variétés riemanniennes, Invent. Math., Tome 24 (1974), pp. 65-82 | Article | MR 343320 | Zbl 0281.35028

[21] Duistermaat, J. On the Morse index in variational calculus, Advances in Math., Tome 21 (1976), pp. 173-195 | Article | MR 649277 | Zbl 0361.49026

[22] Duistermaat, J.; Guillemin, V. The spectrum of positive elliptic operators and periodic geodesics, Invent. Math., Tome 29 (1975), pp. 39-79 | Article | MR 405514 | Zbl 0307.35071

[23] Faure, F. Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula, Annales de l’Institut Fourier, Tome 57 (2007) no. 7, pp. 2525-2599 | Article | Numdam | Zbl pre05249494

[24] Feynman, R.; Hibbs, A. Quantum Mechanics and Path Integrals, McGraw-Hill, New York (1965) | Zbl 0176.54902

[25] Folland, G. Harmonic Analysis in Phase Space, Princeton University Press (1989) | MR 983366 | Zbl 0682.43001

[26] Guillemin, V. Wave-trace invariants, Duke Math. J., Tome 83 (1996), pp. 287-352 | Article | MR 1390650 | Zbl 0858.58051

[27] Guillemin, V.; Melrose, R. The Poisson summation formula for manifolds with boundary, Adv. in Math., Tome 32 (1979), pp. 204-232 | Article | MR 539531 | Zbl 0421.35082

[28] Guillemin, Victor Clean intersection theory and Fourier integrals, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974), Lecture Notes in Math., Vol. 459, Springer (1975), pp. 23-35 | MR 415689 | Zbl 0315.42012

[29] Gutzwiller, M. Periodic orbits and classical quantization conditions, J. Math. Phys., Tome 12 (1971), pp. 343-358 | Article

[30] Hejhal, D. The Selberg trace formula and the Riemann ζ function, Duke Math. J., Tome 43 (1976), pp. 441-482 | Article | MR 414490 | Zbl 0346.10010

[31] Hillairet, L. Contribution of periodic diffractive geodesics, J. Funct. Anal., Tome 226 (2005), pp. 48-89 | Article | MR 2158175 | Zbl 1084.58009

[32] Hofer, H.; Zehnder, E. Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser (1994) | MR 1306732 | Zbl 0837.58013

[33] Hörmander, L. The spectral function of an elliptic operator, Acta Math., Tome 121 (1968), pp. 193-218 | Article | MR 609014 | Zbl 0164.13201

[34] Hörmander, L. The Analysis of Linear Partial Differential Operators I, Springer, Grundlehren (1983) | MR 717035 | Zbl 0521.35001

[35] Hörmander, L. The Analysis of Linear Partial Differential Operators I, Springer, Grundlehren (1985) | MR 781537 | Zbl 0521.35001

[36] Huber, H. Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen, Math. Ann., Tome 138 (1959), pp. 1-26 | Article | MR 109212 | Zbl 0089.06101

[37] Kac, M. Can one hear the shape of a drum?, Amer. Math. Monthly, Tome 73 (1966), pp. 1-23 | Article | MR 201237 | Zbl 0139.05603

[38] Kozlov, V.; Treshchëv, D. Billiards: a genetic introduction to the dynamics of systems with impacts, Transl. Math. Monographs, Amer. Math. Soc., Tome 89 (1991) | MR 1118378 | Zbl 0729.34027

[39] Lax, P. D. Asymptotic solutions of oscillatory initial value problems, Duke Math. J., Tome 24 (1957), pp. 627-646 | Article | MR 97628 | Zbl 0083.31801

[40] Levit, S.; Smilansky, U. A theorem on infinite products of eigenvalues of Sturm type operators, Proc. Amer. Math. Soc., Tome 65 (1977), pp. 299-303 | Article | MR 457836 | Zbl 0374.34016

[41] Malgrange, B. Intégrales asymptotiques et monodromie, Ann. Sci. École Norm. Sup., Tome 7 (1974), pp. 405-430 | Numdam | MR 372243 | Zbl 0305.32008

[42] Marklof, J. Selberg’s trace formula: an introduction (Proceedings of the International School:“Quantum Chaos on Hyperbolic Manifolds”, Schloss Reisensburg, Gunzburg, Germany, 4–11 october 2003, to appear in Springer Lecture Notes in Physics. See also arXiv:math/ 0407288)

[43] Meinrenken, E. Semi-classical principal symbols and Gutzwiller’s trace formula, Rep. Math. Phys., Tome 31 (1992), pp. 279-295 | Article | Zbl 0794.58046

[44] Meinrenken, E. Trace formulas and Conley-Zehnder index, J. Geom. Phys., Tome 13 (1994), pp. 1-15 | Article | MR 1259446 | Zbl 0791.53040

[45] Michel (Ed.), L. Symmetry, invariants, topology, Physics reports, Tome 341 (2001), pp. 1-6 | MR 1845463 | Zbl 0971.22500

[46] Milnor, J. Morse Theory, Princeton (1967) | Zbl 0108.10401

[47] Boutet De Monvel, L.; Guillemin, V. The spectral theory of Toeplitz operators, Annals of Math. Studies, Princeton, Tome 99 (1981) | MR 620794 | Zbl 0469.47021

[48] Morette, C. On the definition and approximation of Feynman’s path integrals, Physical Rev. (2), Tome 81 (1951), pp. 848-852 | Article | Zbl 0042.45506

[49] Ray, D. B.; Singer, I. M. R-torsion and the Laplacian on Riemannian manifolds, Advances in Math., Tome 7 (1971), pp. 145-210 | Article | MR 295381 | Zbl 0239.58014

[50] Selberg, A. Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., Tome 20 (1956), pp. 47-87 | MR 88511 | Zbl 0072.08201

[51] Serre, J.-P. Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2), Tome 54 (1951), pp. 425-505 | Article | MR 45386 | Zbl 0045.26003

[52] Colin De Verdière, Y. Spectre du Laplacien et longueurs des géodésiques périodiques I, Comp. Math., Tome 27 (1973), pp. 80-106 | Numdam | MR 1557068 | Zbl 0272.53034

[53] Colin De Verdière, Y. Spectre du Laplacien et longueurs des géodésiques périodiques II, Comp. Math., Tome 27 (1973), pp. 159-184 | Numdam | MR 1557068 | Zbl 0281.53036

[54] Colin De Verdière, Y. Sur le spectre des opérateurs elliptiques bicaractéristiques toutes périodiques, Comment. Math. Helv., Tome 54 (1979), pp. 508-522 | Article | MR 543346 | Zbl 0459.58014

[55] Colin De Verdière, Y. Déterminants et intégrales de Fresnel, Ann. Inst. Fourier, Tome 49 (1999), pp. 861-881 | Article | Numdam | MR 1703428 | Zbl 0920.35042

[56] Colin De Verdière, Y. Bohr-Sommerfeld rules to all orders, Ann. Henri Poincaré, Tome 6 (2005), pp. 925-936 | Article | MR 2219863 | Zbl 1080.81029

[57] Weinstein, A. Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J., Tome 44 (1977), pp. 883-892 | Article | MR 482878 | Zbl 0385.58013

[58] Weinstein, Alan On Maslov’s quantization condition, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974),Lecture Notes in Math., Vol. 459, Springer (1975), pp. 341-372 | Zbl 0348.58016

[59] Yorke, J. Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc., Tome 22 (1969), pp. 509-512 | Article | MR 245916 | Zbl 0184.12103

[60] Zelditch, S. Wave trace invariants at elliptic closed geodesics, GAFA, Tome 7 (1997), pp. 145-213 | Article | MR 1437476 | Zbl 0876.58010

[61] Zelditch, S. Wave invariants for non-degenerate closed geodesics, GAFA, Tome 8 (1998), pp. 179-207 | Article | MR 1601862 | Zbl 0908.58022