Thom polynomials and Schur functions: the singularities I 2,2 (-)
Annales de l'Institut Fourier, Volume 57 (2007) no. 5, p. 1487-1508

We give the Thom polynomials for the singularities I 2,2 associated with maps ( ,0)( +k ,0) with parameter k0. Our computations combine the characterization of Thom polynomials via the “method of restriction equations” of Rimanyi et al. with the techniques of Schur functions.

Nous présentons les polynômes de Thom pour les singularités I 2,2 associées aux applications ( ,0)( +k ,0) de paramètre k0. Nos calculs combinent la caractérisation des polynômes de Thom via la « méthode des équations restreintes » de Rimanyi et al. avec les techniques des fonctions de Schur.

DOI : https://doi.org/10.5802/aif.2302
Classification:  05E05,  14N10,  57R45
Keywords: Thom polynomials, singularities, global singularity theory, classes of degeneracy loci, Schur functions, resultants
@article{AIF_2007__57_5_1487_0,
     author = {Pragacz, Piotr},
     title = {Thom polynomials and Schur functions: the singularities $I\_{2,2}(-)$},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {57},
     number = {5},
     year = {2007},
     pages = {1487-1508},
     doi = {10.5802/aif.2302},
     mrnumber = {2364137},
     zbl = {1126.05099},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2007__57_5_1487_0}
}
Pragacz, Piotr. Thom polynomials and Schur functions: the singularities $I_{2,2}(-)$. Annales de l'Institut Fourier, Volume 57 (2007) no. 5, pp. 1487-1508. doi : 10.5802/aif.2302. http://www.numdam.org/item/AIF_2007__57_5_1487_0/

[1] Arnold, V.; Vasilev, V.; Goryunov, V.; Lyashko, O. Singularities. Local and global theory, Enc. Math. Sci., Springer, Tome 6 (Dynamical Systems VI) (1993) | Zbl 0787.58001

[2] Berczi, G.; Feher, L.; Rimanyi, R. Expressions for resultants coming from the global theory of singularities, Topics in algebraic and noncommutative geometry, (L.McEwan et al. eds.), Contemporary Math., Amer. Math. Soc., Tome 324 (2003), pp. 63-69 | MR 1986113 | Zbl 1052.57043

[3] Berele, A.; Regev, A. Hook Young diagrams with applications to combinatorics and to representation theory of Lie superalgebras, Adv. in Math., Tome 64 (1987), pp. 118-175 | Article | MR 884183 | Zbl 0617.17002

[4] Damon, J. Thom polynomials for contact singularities, Harvard (1972) (Ph. D. Thesis)

[5] Du Plessis, A.; Wall, C. T. C. The geometry of topological stability, Oxford Math. Monograph (1995) | MR 1408432 | Zbl 0870.57001

[6] Feher, L.; Komuves, B. On second order Thom-Boardman singularities, Fund. Math., Tome 191 (2006), pp. 249-264 | Article | MR 2278625 | Zbl 05115119

[7] Fehér, L.; M., László; Rimányi, R. Calculation of Thom polynomials and other cohomological obstructions for group actions, Real and complex singularities, Amer. Math. Soc. (Contemp. Math.) Tome 354 (2004), pp. 69-93 | MR 2087805 | Zbl 1074.32008

[8] Feher, L.; Rimányi, R. On the structure of Thom polynomials of singularities (Preprint, September 2005)

[9] Fulton, William; Pragacz, Piotr Schubert varieties and degeneracy loci, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1689 (1998) (Appendix J by the authors in collaboration with I. Ciocan-Fontanine) | MR 1639468 | Zbl 0913.14016

[10] Jänich, K. Symmetry properties of singularities of C -functions, Math. Ann., Tome 238 (1979), pp. 147-156 | Article | MR 512820 | Zbl 0373.58002

[11] Kazarian, M. E. (Letter to the author, dated July 4, 2006)

[12] Kazarian, M. E. Characteristic classes of singularity theory, The Arnold-Gelfand mathematical seminars: Geometry and singularity theory (1997), pp. 325-340 | MR 1429898 | Zbl 0872.57034

[13] Kazarian, M. E. Classifying spaces of singularities and Thom polynomials, New developments in singularity theory, NATO Sci. Ser. II Math. Phys. Chem., Kluwer Acad. Publ., Dordrecht, Tome 21 (2001), pp. 117-134 | MR 1849306 | Zbl 0991.58010

[14] Kleiman, S. The enumerative theory of singularities, Real and complex singularities, Oslo 1976 (P. Holm ed.) (1978), pp. 297-396 | MR 568897 | Zbl 0385.14018

[15] Laksov, D.; Lascoux, A.; Thorup, A. On Giambelli’s theorem for complete correlations, Acta Math., Tome 162 (1989), pp. 143-199 | Article | Zbl 0695.14023

[16] Lascoux, A. Symmetric functions and combinatorial operators on polynomials, CBMS/AMS Lectures Notes, Providence, Tome 99 (2003) | MR 2017492 | Zbl 1039.05066

[17] Lascoux, A.; Schützenberger, M.-P. Formulaire raisonné de fonctions symétriques, Université Paris 7 (1985)

[18] Lascoux, Alain Addition of ±1: application to arithmetic, Sém. Lothar. Combin., Tome 52 (2004/05), pp. Art. B52a, 9pp. (electronic) | MR 2081105 | Zbl 02171950

[19] Macdonald, I. G. Symmetric functions and Hall-Littlewood polynomials, Oxford Math. Monographs, Amer. Math. Soc. (1995) (2nd ed.)

[20] Ozturk, O. On Thom polynomials for A 4 (-) via Schur functions (Preprint, IMPAN Warszawa 2006 (670), to appear in Serdica Math.J.)

[21] Porteous, I. Simple singularities of maps, Proc. Liverpool Singularities I, Springer Lecture Notes in Math., Springer, Tome 192 (1971), pp. 286-307 | MR 293646 | Zbl 0221.57016

[22] Pragacz, P. Thom polynomials and Schur functions I (math.AG/0509234)

[23] Pragacz, P. Thom polynomials and Schur functions: the singularities A 3 (-) (in preparation)

[24] Pragacz, P. Thom polynomials and Schur functions: towards the singularities A i (-) (Preprint MPIM Bonn 2006 (139))

[25] Pragacz, P. Note on elimination theory, Indagationes Math., Tome 49 (1987), pp. 215-221 | Article | MR 898165 | Zbl 0632.12002

[26] Pragacz, P. Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup., Tome 21 (1988), pp. 413-454 | Numdam | MR 974411 | Zbl 0687.14043

[27] Pragacz, P. Algebro-geometric applications of Schur S- and Q-polynomials, Topics in invariant theory, Séminaire d’Algèbre Dubreil-Malliavin 1989-1990 (M.-P. Malliavin ed.), Springer Lecture Notes in Math., Springer, Tome 1478 (1991), pp. 130-191 | Zbl 0783.14031

[28] Pragacz, P. Symmetric polynomials and divided differences in formulas of intersection theory, Parameter spaces (P. Pragacz ed.), Banach Center Publications, Tome 36 (1996), pp. 125-177 | MR 1481485 | Zbl 0851.05094

[29] Pragacz, P.; Thorup, A. On a Jacobi-Trudi identity for supersymmetric polynomials, Adv. in Math., Tome 95 (1992), pp. 8-17 | Article | MR 1176151 | Zbl 0774.05101

[30] Pragacz, P.; Weber, A. Positivity of Schur function expansions of Thom polynomials (Preprint, math.AG/0605308 and MPIM Bonn 2006 (60), to appear in Fund. Math.)

[31] Rimanyi, R. Thom polynomials, symmetries and incidences of singularities, Inv. Math., Tome 143 (2001), pp. 499-521 | Article | MR 1817643 | Zbl 0985.32012

[32] Rimanyi, R.; Szücs, A. Generalized Pontrjagin-Thom construction for maps with singularities, Topology, Tome 37 (1998), pp. 1177-1191 | Article | MR 1632908 | Zbl 0924.57035

[33] Schubert, H. Allgemeine Anzahlfunctionen für Kegelschnitte, Flächen und Raüme zweiten Grades in n Dimensionen, Math. Ann., Tome 45 (1894), pp. 153-206 | Article | MR 1510859

[34] Stembridge, J. A characterization of supersymmetric polynomials, J. Algebra, Tome 95 (1985), pp. 439-444 | Article | MR 801279 | Zbl 0573.17004

[35] Thom, R. Les singularités des applications différentiables, Ann. Inst. Fourier, Tome 6 (1955–56), pp. 43-87 | Article | Numdam | MR 87149 | Zbl 0075.32104

[36] Wall, C. T. C. A second note on symmetry of singularities, Bull. London Math. Soc., Tome 12 (1980), pp. 347-354 | Article | MR 587705 | Zbl 0424.58006