On considère l’application du billard dans le cube de . On code cette application par les faces du cube. On obtient un langage, dont on cherche à évaluer la complexité. On montre que l’ordre de grandeur de cette fonction est .
We consider the billiard map in the hypercube of . We obtain a language by coding the billiard map by the faces of the hypercube. We investigate the complexity function of this language. We prove that is the order of magnitude of the complexity.
Classification : 37A35, 37C35, 05A16, 11N37, 28D
Mots clés : Dynamique symbolique, billard, mots, complexité
@article{AIF_2007__57_3_719_0, author = {Bedaride, Nicolas and Hubert, Pascal}, title = {Billiard complexity in the hypercube}, journal = {Annales de l'Institut Fourier}, pages = {719--738}, publisher = {Association des Annales de l'institut Fourier}, volume = {57}, number = {3}, year = {2007}, doi = {10.5802/aif.2274}, mrnumber = {2336827}, zbl = {1138.37017}, language = {en}, url = {www.numdam.org/item/AIF_2007__57_3_719_0/} }
Bedaride, Nicolas; Hubert, Pascal. Billiard complexity in the hypercube. Annales de l'Institut Fourier, Tome 57 (2007) no. 3, pp. 719-738. doi : 10.5802/aif.2274. http://www.numdam.org/item/AIF_2007__57_3_719_0/
[1] Complexity of sequences defined by billiard in the cube, Bull. Soc. Math. France, Volume 122 (1994) no. 1, pp. 1-12 | EuDML 87681 | Numdam | MR 1259106 | Zbl 0791.58034
[2] Complexity of trajectories in rectangular billiards, Comm. Math. Phys., Volume 174 (1995) no. 1, pp. 43-56 | Article | MR 1372799 | Zbl 0839.11006
[3] Billiard complexity in rational polyhedra, Regul. Chaotic Dyn., Volume 8 (2003) no. 1, pp. 97-104 | Article | MR 1963971 | Zbl 1023.37024
[4] Entropy of polyhedral billiard (2005) (submitted) | Zbl 1200.37034
[5] A generalization of Baryshnikov’s formula. (2006) (Preprint)
[6] A geometric proof of the enumeration formula for Sturmian words, Internat. J. Algebra Comput., Volume 3 (1993) no. 3, pp. 349-355 | Article | MR 1240390 | Zbl 0802.68099
[7] Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin, Volume 4 (1997) no. 1, pp. 67-88 (Journées Montoises (Mons, 1994)) | EuDML 119937 | MR 1440670 | Zbl 0921.68065
[8] Complexity and growth for polygonal billiards, Ann. Inst. Fourier, Volume 52 (2002) no. 3, pp. 835-847 | Article | EuDML 115996 | Numdam | MR 1907389 | Zbl 1115.37312
[9] Intersection theory, Springer-Verlag, Volume 2 (1998), pp. xiv+470 | MR 1644323 | Zbl 0885.14002
[10] Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys., Volume 169 (1995) no. 3, pp. 463-473 | Article | MR 1328732 | Zbl 0924.58043
[11] An introduction to the theory of numbers, The Clarendon Press Oxford University Press, New York, 1979 | MR 568909 | Zbl 0020.29201
[12] Complexité de suites définies par des billards rationnels, Bull. Soc. Math. France, Volume 123 (1995) no. 2, pp. 257-270 | Numdam | MR 1340290 | Zbl 0836.58013
[13] The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys., Volume 111 (1987) no. 1, pp. 151-160 | Article | MR 896765 | Zbl 0631.58020
[14] The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems, Volume 10 (1990) no. 1, pp. 151-176 | Article | MR 1053805 | Zbl 0706.30035
[15] On the number of factors of Sturmian words, Theoret. Comput. Sci., Volume 82 (1991) no. 1, Algorithms Automat. Complexity Games, pp. 71-84 | Article | MR 1112109 | Zbl 0728.68093
[16] Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., Volume 62 (1940), pp. 1-42 | Article | MR 745 | Zbl 0022.34003