Continued fractions and transcendental numbers
Annales de l'Institut Fourier, Volume 56 (2006) no. 7, p. 2093-2113

The main purpose of this work is to present new families of transcendental continued fractions with bounded partial quotients. Our results are derived thanks to combinatorial transcendence criteria recently obtained by the first two authors in [3].

L’objet principal de ce travail est de donner de nouvelles familles de fractions continues transcendantes dont la suite des quotients partiels est bornée. Les démonstrations de nos résultats reposent sur les critères combinatoires de transcendance récemment obtenus par les deux premiers auteurs dans [3].

DOI : https://doi.org/10.5802/aif.2234
Classification:  11J81,  11J70,  68R15
Keywords: Continued fractions, transcendental numbers, subspace theorem
@article{AIF_2006__56_7_2093_0,
     author = {Adamczewski, Boris and Bugeaud, Yann and Davison, Les},
     title = {Continued fractions and transcendental numbers},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {56},
     number = {7},
     year = {2006},
     pages = {2093-2113},
     doi = {10.5802/aif.2234},
     mrnumber = {2290775},
     zbl = {1152.11034},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2006__56_7_2093_0}
}
Adamczewski, Boris; Bugeaud, Yann; Davison, Les. Continued fractions and transcendental numbers. Annales de l'Institut Fourier, Volume 56 (2006) no. 7, pp. 2093-2113. doi : 10.5802/aif.2234. http://www.numdam.org/item/AIF_2006__56_7_2093_0/

[1] Adamczewski, B. Transcendance “à la Liouville” de certain nombres réels, C. R. Acad. Sci. Paris, Tome 338 (2004), pp. 511-514 | MR 2057021 | Zbl 1046.11051

[2] Adamczewski, B.; Bugeaud, Y. On the complexity of algebraic numbers I. Expansions in integer bases (Ann. of Math. To appear) | Zbl pre05180742

[3] Adamczewski, B.; Bugeaud, Y. On the complexity of algebraic numbers II. Continued fractions (Acta Math. To appear) | MR 2233683 | Zbl 05039002

[4] Adamczewski, B.; Bugeaud, Y. On the Maillet–Baker continued fractions (Preprint)

[5] Adamczewski, B.; Bugeaud, Y.; Luca, F. Sur la complexité des nombres algébriques, C. R. Acad. Sci. Paris, Tome 339 (2004), pp. 11-14 | MR 2075225 | Zbl 02094011

[6] Allouche, J.-P. Nouveaux résultats de transcendance de réels à développements non aléatoire, Gaz. Math., Tome 84 (2000), pp. 19-34 | MR 1766087

[7] Allouche, J.-P.; Davison, J. L.; Queffélec, M.; Zamboni, L. Q. Transcendence of Sturmian or morphic continued fractions, J. Number Theory, Tome 91 (2001), pp. 39-66 | Article | MR 1869317 | Zbl 0998.11036

[8] Allouche, J.-P.; Shallit, J. O. Generalized Pertured Symmetry, European J. Combin., Tome 19 (1998), pp. 401-411 | Article | MR 1630532 | Zbl 0918.11015

[9] Allouche, J.-P.; Shallit, J. O. Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge (2003) | MR 1997038 | Zbl 01993704

[10] Baker, A. Continued fractions of transcendental numbers, Mathematika, Tome 9 (1962), pp. 1-8 | Article | MR 144853 | Zbl 0105.03903

[11] Baker, A. On Mahler’s classification of transcendental numbers, Acta Math., Tome 111 (1964), pp. 97-120 | Article | MR 157943 | Zbl 0147.03403

[12] Baum, L. E.; Sweet, M. M. Continued fractions of algebraic power series in characteristic 2, Ann. of Math., Tome 103 (1976), pp. 593-610 | Article | MR 409372 | Zbl 0312.10024

[13] Baxa, C. Extremal values of continuants and transcendence of certain continued fractions, Adv. in Appl. Math., Tome 32 (2004), pp. 754-790 | Article | MR 2053844 | Zbl 1063.11019

[14] Blanchard, A.; Mendès France, M. Symétrie et transcendance, Bull. Sci. Math., Tome 106 (1982), pp. 325-335 | MR 680277 | Zbl 0492.10027

[15] Davenport, H.; Roth, K. F. Rational approximations to algebraic numbers, Mathematika, Tome 2 (1955), pp. 160-167 | Article | MR 77577 | Zbl 0066.29302

[16] Davison, J. L. A class of transcendental numbers with bounded partial quotients, Theory and Applications, R. A. Mollin, ed. (1989), pp. 365-371 (Kluwer Academic Publishers) | MR 1123082 | Zbl 0693.10028

[17] Davison, J. L. Continued fractions with bounded partial quotients, Proc. Edinb. Math. Soc., Tome 45 (2002), pp. 653-671 | Article | MR 1933746 | Zbl 01850577

[18] Dekking, F. M.; Mendès France, M.; Van Der Poorten, A. J. Folds!, Math. Intelligencer, Tome 4 (1982), p. 130-138, 173-181, 190-195 (Erratum, 5 (1983), 5) | Article | MR 684028 | Zbl 0493.10003

[19] Evertse, J.-H. The number of algebraic numbers of given degree approximating a given algebraic number, London Math. Soc. Lecture Note Ser. 247, Tome In Analytic number theory (Kyoto, 1996) (1997), pp. 53-83 (Cambridge Univ. Press, Cambridge) | MR 1694985 | Zbl 0919.11048

[20] Fogg, N. Pytheas Substitutions in Dynamics, Arithmetics and Combinatorics, Springer-Verlag, Lecture Notes in Mathematics 1794 (2002) | MR 1970385 | Zbl 1014.11015

[21] Hartmanis, J.; Stearns, R. E. On the computational complexity of algorithms, Trans. Amer. Math. Soc., Tome 117 (1965), pp. 285-306 | Article | MR 170805 | Zbl 0131.15404

[22] Khintchine, A. Ya. Continued fractions, Moscow-Leningrad Tome 2nd edition (1949) (in Russian) | Zbl 0117.28503

[23] Lang, S. Introduction to Diophantine Approximations, Springer-Verlag (1995) | MR 1348400 | Zbl 0826.11030

[24] Leveque, W. J. Topics in number theory, Addison-Wesley Tome Vol. II (1956) | MR 80682 | Zbl 0070.03803

[25] Liardet, P.; Stambul, P. Séries de Engel et fractions continuées, J. Théor. Nombres Bordeaux, Tome 12 (2000), pp. 37-68 | Article | Numdam | MR 1827837 | Zbl 1007.11045

[26] Liouville, J. Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationelles algébriques, C. R. Acad. Sci. Paris, Tome 18 (1844), p. 883-885, 910-911

[27] Loxton, J. H.; Van Der Poorten, A. J. Arithmetic properties of certain functions in several variables III, Bull. Austral. Math. Soc., Tome 16 (1977), pp. 15-47 | Article | MR 452125 | Zbl 0339.10028

[28] Maillet, E. Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions, Gauthier-Villars, Paris (1906)

[29] Mendès France, M. Principe de la symétrie perturbée, Séminaire de Théorie des Nombres, Paris 1979-80, M.-J. Bertin (éd.), Birkhäuser, Boston (1981), pp. 77-98 | MR 633890 | Zbl 0451.10019

[30] Perron, O. Die Lehre von den Kettenbrüchen, Teubner, Leipzig (1929)

[31] Van Der Poorten, A. J.; Shallit, J. O. Folded continued fractions, J. Number Theory, Tome 40 (1992), pp. 237-250 | Article | MR 1149740 | Zbl 0753.11005

[32] Queffélec, M. Transcendance des fractions continues de Thue–Morse, J. Number Theory, Tome 73 (1998), pp. 201-211 | Article | MR 1658023 | Zbl 0920.11045

[33] Queffélec, M. Irrational number with automaton-generated continued fraction expansion, World Scientific, Dynamical Systems: From Crystal to Chaos (2000), pp. 190-198 (J.-M. Gambaudo, P. Hubert, P. Tisseur, and S. Vaienti, editors) | MR 1796159

[34] Ridout, D. Rational approximations to algebraic numbers, Mathematika, Tome 4 (1957), pp. 125-131 | Article | MR 93508 | Zbl 0079.27401

[35] Rudin, W. Some theorems on Fourier coefficients, Proc. Amer. Math. Soc., Tome 10 (1959), pp. 855-859 | Article | MR 116184 | Zbl 0091.05706

[36] Schmidt, W. M. On simultaneous approximations of two algebraic numbers by rationals, Acta Math., Tome 119 (1967), pp. 27-50 | Article | MR 223309 | Zbl 0173.04801

[37] Schmidt, W. M. Norm form equations, Ann. of Math., Tome 96 (1972), pp. 526-551 | Article | MR 314761 | Zbl 0226.10024

[38] Schmidt, W. M. Diophantine approximation, Springer, Berlin (1980) | MR 568710 | Zbl 0421.10019

[39] Shallit, J. O. Real numbers with bounded partial quotients: a survey, Enseign. Math., Tome 38 (1992), pp. 151-187 | MR 1175525 | Zbl 0753.11006

[40] Shapiro, H. S. Extremal problems for polynomials and power series, MIT (1952) (Master’s thesis)

[41] Waldschmidt, M. Un demi-siècle de transcendance, Development of mathematics 1950–2000 (2000), pp. 1121-1186 (Birkhäuser, Basel) | Article | MR 1796871 | Zbl 0977.11030