On Solvable Generalized Calabi-Yau Manifolds  [ Sur les variétés de Calabi-Yau généralisées résolubles ]
Annales de l'Institut Fourier, Tome 56 (2006) no. 5, p. 1281-1296
On donne un exemple d’une variété symplectique compacte (M,κ) de dimension 6  qui n’admet aucune structure Kählerienne, mais qui satisfait la condition de Lefschetz Forte et dont l’algèbre de DeRham est formelle ; de plus, on montre que (M,κ)  peut être dotée d’une structure de Calabi-Yau généralisée spéciale.
We give an example of a compact 6-dimensional non-Kähler symplectic manifold (M,κ) that satisfies the Hard Lefschetz Condition. Moreover, it is showed that (M,κ) is a special generalized Calabi-Yau manifold.
DOI : https://doi.org/10.5802/aif.2213
Classification:  17B30,  53C15,  53D05
Mots clés: variété de Calabi-Yau, Calabi-Yau manifolds
@article{AIF_2006__56_5_1281_0,
     author = {de Bartolomeis, Paolo and Tomassini, Adriano},
     title = {On Solvable Generalized Calabi-Yau Manifolds},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {56},
     number = {5},
     year = {2006},
     pages = {1281-1296},
     doi = {10.5802/aif.2213},
     mrnumber = {2273857},
     zbl = {1127.53065},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2006__56_5_1281_0}
}
de Bartolomeis, Paolo; Tomassini, Adriano. On Solvable Generalized Calabi-Yau Manifolds. Annales de l'Institut Fourier, Tome 56 (2006) no. 5, pp. 1281-1296. doi : 10.5802/aif.2213. http://www.numdam.org/item/AIF_2006__56_5_1281_0/

[1] De Bartolomeis, P. Symplectic and Holomorphic Theory in Kähler Geometry, XIII Escola de Geometria Diferencial Istituto Matemática e Estatística Universidade de São Paulo (2004) (Technical report)

[2] De Bartolomeis, P.; Tomassini, A. On the Maslov Index of Lagrangian Submanifolds of Generalized Calabi-Yau Manifolds (preprint (2005)) | Zbl 1115.53053 | Zbl 05123204

[3] De Bartolomeis, P.; Tomassini, A. On Formality of Some Symplectic Manifolds, Inter. Math. Res. Notic., Tome 24 (2001), pp. 1287-1314 | Article | MR 1866746 | Zbl 1004.53068

[4] Benson, C.; Gordon, C. S. Kähler and symplectic structures on nilmanifolds, Topology, Tome 27 (1988), pp. 513-518 | Article | MR 976592 | Zbl 0672.53036

[5] Blanchard, A. Sur le variétés analitiques complexes, Ann. Sci. Ecole Norm. Sup., Tome 73 (1956), pp. 157-202 | Numdam | MR 87184 | Zbl 0073.37503

[6] Brylinski, J. L. A Differential Complex for Poisson Manifolds, J. Diff. Geom., Tome 28 (1988), pp. 93-114 | MR 950556 | Zbl 0634.58029

[7] Deligne, P.; Griffiths, P.; Morgan, J.; Sullivan, D. Real Homotopy Theory of Kähler Manifolds, Inventiones Math., Tome 29 (1975), pp. 245-274 | Article | MR 382702 | Zbl 0312.55011

[8] Hasegawa, K. A note on compact solvmanifolds with Kähler structures, Osaka J. of Math., Tome 43 (2006) no. 3, pp. 131-135 | MR 2222405 | Zbl 1105.32017

[9] Mathieu, O. Harmonic cohomology classes of symplectic manifolds, Comm. Math. Helvetici, Tome 70 (1995), pp. 1-9 | Article | MR 1314938 | Zbl 0831.58004

[10] Merkulov, S. A. Formality of Canonical Symplectic Complexes and Frobenius Manifolds, Int. Math. Res. Not., Tome 4 (1998), pp. 727-733 | Article | MR 1637093 | Zbl 0931.58002

[11] Nakamura, I. Complex parallelisable manifolds and their small deformations, J. of Diff. Geom., Tome 10 (1975), pp. 85-112 | MR 393580 | Zbl 0297.32019

[12] Silva, A. Spazi omogenei Kähleriani di gruppi di Lie complessi risolubili, Boll. U.M.I., Tome 2 A (1983), pp. 203-210 | Zbl 0539.32014

[13] Yan, D. Hodge Structure on Symplectic Manifolds, Adv. in Math., Tome 120 (1996), pp. 143-154 | Article | MR 1392276 | Zbl 0872.58002