de Bartolomeis, Paolo; Tomassini, Adriano
On Solvable Generalized Calabi-Yau Manifolds  [ Sur les variétés de Calabi-Yau généralisées résolubles ]
Annales de l'institut Fourier, Tome 56 (2006) no. 5 , p. 1281-1296
MR 2273857 | Zbl 1127.53065
doi : 10.5802/aif.2213
URL stable : http://www.numdam.org/item?id=AIF_2006__56_5_1281_0

Classification:  17B30,  53C15,  53D05
Mots clés: variété de Calabi-Yau, Calabi-Yau manifolds
On donne un exemple d’une variété symplectique compacte (M,κ) de dimension 6  qui n’admet aucune structure Kählerienne, mais qui satisfait la condition de Lefschetz Forte et dont l’algèbre de DeRham est formelle ; de plus, on montre que (M,κ)  peut être dotée d’une structure de Calabi-Yau généralisée spéciale.
We give an example of a compact 6-dimensional non-Kähler symplectic manifold (M,κ) that satisfies the Hard Lefschetz Condition. Moreover, it is showed that (M,κ) is a special generalized Calabi-Yau manifold.

Bibliographie

[1] De Bartolomeis, P. Symplectic and Holomorphic Theory in Kähler Geometry, XIII Escola de Geometria Diferencial Istituto Matemática e Estatística Universidade de São Paulo (2004) (Technical report)

[2] De Bartolomeis, P.; Tomassini, A. On the Maslov Index of Lagrangian Submanifolds of Generalized Calabi-Yau Manifolds (preprint (2005)) Zbl 05123204

[3] De Bartolomeis, P.; Tomassini, A. On Formality of Some Symplectic Manifolds, Inter. Math. Res. Notic., 24 (2001), p. 1287-1314 Article  MR 1866746 | Zbl 1004.53068

[4] Benson, C.; Gordon, C. S. Kähler and symplectic structures on nilmanifolds, Topology, 27 (1988), p. 513-518 Article  MR 976592 | Zbl 0672.53036

[5] Blanchard, A. Sur le variétés analitiques complexes, Ann. Sci. Ecole Norm. Sup., 73 (1956), p. 157-202 Numdam | MR 87184 | Zbl 0073.37503

[6] Brylinski, J. L. A Differential Complex for Poisson Manifolds, J. Diff. Geom., 28 (1988), p. 93-114 MR 950556 | Zbl 0634.58029

[7] Deligne, P.; Griffiths, P.; Morgan, J.; Sullivan, D. Real Homotopy Theory of Kähler Manifolds, Inventiones Math., 29 (1975), p. 245-274 Article  MR 382702 | Zbl 0312.55011

[8] Hasegawa, K. A note on compact solvmanifolds with Kähler structures, Osaka J. of Math., 43 (2006) no. 3, p. 131-135 MR 2222405 | Zbl 1105.32017

[9] Mathieu, O. Harmonic cohomology classes of symplectic manifolds, Comm. Math. Helvetici, 70 (1995), p. 1-9 Article  MR 1314938 | Zbl 0831.58004

[10] Merkulov, S. A. Formality of Canonical Symplectic Complexes and Frobenius Manifolds, Int. Math. Res. Not., 4 (1998), p. 727-733 Article  MR 1637093 | Zbl 0931.58002

[11] Nakamura, I. Complex parallelisable manifolds and their small deformations, J. of Diff. Geom., 10 (1975), p. 85-112 MR 393580 | Zbl 0297.32019

[12] Silva, A. Spazi omogenei Kähleriani di gruppi di Lie complessi risolubili, Boll. U.M.I., 2 A (1983), p. 203-210 Zbl 0539.32014

[13] Yan, D. Hodge Structure on Symplectic Manifolds, Adv. in Math., 120 (1996), p. 143-154 Article  MR 1392276 | Zbl 0872.58002