Anticyclotomic Iwasawa theory of CM elliptic curves  [ Théorie anticylotomique d’une courbe élliptique à multiplication complexe ]
Annales de l'Institut Fourier, Tome 56 (2006) no. 4, pp. 1001-1048.

Nous étudions la théorie d’Iwasawa d’une courbe elliptique E à multiplication complexe, dans la Z p -extension anticyclotomique du corps de multiplication complexe (ici p est un nombre premier ou E a une bonne réduction ordinaire). Si la fonction L complexe de E a un zero à s=1 de multiplicité paire, la preuve de Rubin de la conjecture principale d’Iwasawa en deux variables impliquent que le dual de Pontryagin de la composante p-primaire du groupe de Selmer est de torsion comme module d’Iwasawa. Si la multiplicité est impaire, les travaux de Greenberg impliquent que ce module n’est pas un module de torsion. Ici nous montrons que, en cas de multiplicité impaire, le dual de Pontryagin du groupe de Selmer est un module de rang un, et nous prouvons une conjecture principale d’Iwasawa pour le sous-module de torsion.

We study the Iwasawa theory of a CM elliptic curve E in the anticyclotomic Z p -extension of the CM field, where p is a prime of good, ordinary reduction for E. When the complex L-function of E vanishes to even order, Rubin’s proof of the two variable main conjecture of Iwasawa theory implies that the Pontryagin dual of the p-power Selmer group over the anticyclotomic extension is a torsion Iwasawa module. When the order of vanishing is odd, work of Greenberg show that it is not a torsion module. In this paper we show that in the case of odd order of vanishing the dual of the Selmer group has rank exactly one, and we prove a form of the Iwasawa main conjecture for the torsion submodule.

DOI : https://doi.org/10.5802/aif.2206
Classification : 11G05,  11R23,  11G16
Mots clés : courbes élliptiques, théorie d’Iwasawa, conjecture principale, fonction L p-adique
@article{AIF_2006__56_4_1001_0,
     author = {Agboola, Adebisi and Howard, Benjamin},
     title = {Anticyclotomic Iwasawa theory of CM elliptic curves},
     journal = {Annales de l'Institut Fourier},
     pages = {1001--1048},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {56},
     number = {4},
     year = {2006},
     doi = {10.5802/aif.2206},
     mrnumber = {2266884},
     zbl = {1168.11023},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2006__56_4_1001_0/}
}
Agboola, Adebisi; Howard, Benjamin. Anticyclotomic Iwasawa theory of CM elliptic curves. Annales de l'Institut Fourier, Tome 56 (2006) no. 4, pp. 1001-1048. doi : 10.5802/aif.2206. http://www.numdam.org/item/AIF_2006__56_4_1001_0/

[1] Arnold, T. Anticyclotomic main conjectures for CM modular forms (2005) (Preprint)

[2] Bertrand, D. Propriétés arithmétiques de fonctions thêta à plusieurs variables, Number theory, Noordwijkerhout 1983 (Lecture Notes in Math.), Volume 1068, Springer, Berlin, 1984, pp. 17-22 | MR 756080 | Zbl 0546.14029

[3] Coates, J. Infinite descent on elliptic curves with complex multiplication, Arithmetic and Geometry, Vol. I (Progr. Math.), Volume 35, Birkhäuser Boston, Boston, MA, 1983, pp. 107-137 | MR 717591 | Zbl 0541.14026

[4] Greenberg, Ralph On the structure of certain Galois groups, Invent. Math., Volume 47 (1978) no. 1, pp. 85-99 | Article | MR 504453 | Zbl 0403.12004

[5] Greenberg, Ralph On the Birch and Swinnerton-Dyer conjecture, Invent. Math., Volume 72 (1983) no. 2, pp. 241-265 | Article | MR 700770 | Zbl 0546.14015

[6] Gross, Benedict H.; Zagier, Don B. Heegner points and derivatives of L-series, Invent. Math., Volume 84 (1986) no. 2, pp. 225-320 | Article | MR 833192 | Zbl 0608.14019

[7] Howard, Benjamin The Iwasawa theoretic Gross-Zagier theorem, Compos. Math., Volume 141 (2005) no. 4, pp. 811-846 | Article | MR 2148200 | Zbl 02211027

[8] Lang, Serge Algebraic number theory, Graduate Texts in Mathematics, 110, Springer-Verlag, New York, 1994 | MR 1282723 | Zbl 0811.11001

[9] Martinet, J. Character theory and Artin L-functions, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 1-87 | MR 447187 | Zbl 0359.12015

[10] Mazur, B. Modular curves and arithmetic, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) (1984), pp. 185-211 | MR 804682 | Zbl 0597.14023

[11] Mazur, B.; Tate, J. Canonical height pairings via biextensions, Arithmetic and geometry, Vol. I (Progr. Math.), Volume 35, Birkhäuser Boston, Boston, MA, 1983, pp. 195-237 | MR 717595 | Zbl 0574.14036

[12] Mazur, Barry Rational points of abelian varieties with values in towers of number fields, Invent. Math., Volume 18 (1972), pp. 183-266 | Article | EuDML 142180 | MR 444670 | Zbl 0245.14015

[13] Mazur, Barry; Rubin, Karl Elliptic curves and class field theory, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) (2002), pp. 185-195 | MR 1957032 | Zbl 1036.11023

[14] Mazur, Barry; Rubin, Karl Studying the growth of Mordell-Weil, Doc. Math. (2003) no. Extra Vol., p. 585-607 (electronic) (Kazuya Kato’s fiftieth birthday) | EuDML 129130 | MR 2046609 | Zbl 1142.11339

[15] Mazur, Barry; Rubin, Karl Kolyvagin systems, Mem. Amer. Math. Soc., Volume 168 (2004), pp. viii+96 | MR 2031496 | Zbl 1055.11041

[16] Perrin-Riou, Bernadette Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mém. Soc. Math. France (N.S.) (1984) no. 17, pp. 130 | EuDML 94856 | Numdam | MR 799673 | Zbl 0599.14020

[17] Perrin-Riou, Bernadette Fonctions L p-adiques, théorie d’Iwasawa et points de Heegner, Bull. Soc. Math. France, Volume 115 (1987) no. 4, pp. 399-456 | EuDML 87541 | Numdam | MR 928018 | Zbl 0664.12010

[18] Perrin-Riou, Bernadette Théorie d’Iwasawa et hauteurs p-adiques, Invent. Math., Volume 109 (1992) no. 1, pp. 137-185 | Article | EuDML 144016 | MR 1168369 | Zbl 0781.14013

[19] Rohrlich, David E. On L-functions of elliptic curves and anticyclotomic towers, Invent. Math., Volume 75 (1984), pp. 383-408 | Article | EuDML 143102 | MR 735332 | Zbl 0565.14008

[20] Rubin, Karl The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math., Volume 103 (1991) no. 1, pp. 25-68 | Article | EuDML 143852 | MR 1079839 | Zbl 0737.11030

[21] Rubin, Karl p-adic L-functions and rational points on elliptic curves with complex multiplication, Invent. Math., Volume 107 (1992) no. 2, pp. 323-350 | Article | EuDML 143969 | MR 1144427 | Zbl 0770.11033

[22] Rubin, Karl Abelian varieties, p-adic heights and derivatives, Algebra and number theory (Essen, 1992), de Gruyter, Berlin, 1994, pp. 247-266 | MR 1285370 | Zbl 0829.11034

[23] Rubin, Karl Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer, Arithmetic theory of elliptic curves (Cetraro, 1997) (Lecture Notes in Math.), Volume 1716, Springer, Berlin, 1999, pp. 167-234 | MR 1754688 | Zbl 0991.11028

[24] Rubin, Karl Euler systems, Annals of Mathematics Studies, 147, Princeton University Press, Princeton, NJ, 2000 (Hermann Weyl Lectures. The Institute for Advanced Study) | MR 1749177 | Zbl 0977.11001

[25] de Shalit, Ehud Iwasawa theory of elliptic curves with complex multiplication, Perspectives in Mathematics, 3, Academic Press Inc., Boston, MA, 1987 | MR 917944 | Zbl 0674.12004

[26] Weil, A. Automorphic Forms and Dirichlet Series, Dirichlet series and automorphic forms. Lezioni fermiane. (Lecture Notes in Math.), Volume 189, Springer, 1971 | Zbl 0218.10046

[27] Yager, Rodney I. On two variable p-adic L-functions, Ann. of Math. (2), Volume 115 (1982) no. 2, pp. 411-449 | Article | MR 647813 | Zbl 0496.12010