Hamiltonian stability and subanalytic geometry
Annales de l'Institut Fourier, Volume 56 (2006) no. 3, p. 795-813

In the 70’s, Nekhorochev proved that for an analytic nearly integrable Hamiltonian system, the action variables of the unperturbed Hamiltonian remain nearly constant over an exponentially long time with respect to the size of the perturbation, provided that the unperturbed Hamiltonian satisfies some generic transversality condition known as steepness. Using theorems of real subanalytic geometry, we derive a geometric criterion for steepness: a numerical function h which is real analytic around a compact set in n is steep if and only if its restriction to any affine subspace of n admits only isolated critical points. We also state a necessary condition for exponential stability, which is close to steepness.

Finally, we give methods to compute lower bounds for the steepness indices of an arbitrary steep function.

La notion de raideur a été introduite pour étudier la stabilité effective des systèmes Hamiltoniens quasi-intégrables. À l’aide de théorèmes de géométrie sous-analytique, on donne une condition géométrique simple qui est équivalente à la raideur pour une fonction réelle analytique.

DOI : https://doi.org/10.5802/aif.2200
Classification:  14P15,  32B20,  32S05,  37J40,  70H08,  70H09,  70H14
Keywords: Hamiltonian systems, stability, subanalytic geometry, curve selection lemma, Lojasiewicz’s inequalities
@article{AIF_2006__56_3_795_0,
     author = {Niederman, Laurent},
     title = {Hamiltonian stability and subanalytic geometry},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {56},
     number = {3},
     year = {2006},
     pages = {795-813},
     doi = {10.5802/aif.2200},
     mrnumber = {2244230},
     zbl = {1120.14048},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2006__56_3_795_0}
}
Niederman, Laurent. Hamiltonian stability and subanalytic geometry. Annales de l'Institut Fourier, Volume 56 (2006) no. 3, pp. 795-813. doi : 10.5802/aif.2200. http://www.numdam.org/item/AIF_2006__56_3_795_0/

[1] Arnold, V. I.; Gusein-Zade, S. M.; Varchenko, A.N. Singularities of differentiable maps. Volume II: Monodromy and asymptotics of integrals, Monographs in Mathematics, Birkhäuser-Verlag, Boston, Tome 83 (1988) | MR 966191 | Zbl 0659.58002

[2] Benettin, G.; Fasso, F.; Guzzo, M. Nekhorochev stability of L4 and L5 in the spatial restricted three body problem, Regul. Chaotic Dyn., Tome 3 (1998), pp. 56-72 | Article | MR 1704969 | Zbl 0934.70010

[3] Bierstone, E.; Milman, P. D. Semianalytic and subanalytic sets, Publ. Math. IHÉS, Tome 67 (1988), pp. 5-42 | Numdam | MR 972342 | Zbl 0674.32002

[4] Bochnak, J.; Risler, J. J. Sur les exposants de Lojasiewicz, Comment. Math. Helvetici, Tome 50 (1975), pp. 493-507 | Article | MR 404674 | Zbl 0321.32006

[5] Broer, H. W.; Huitema, G. B.; Sevryuk, M. B. Quasi-periodicity in families of dynamical systems: order amidst chaos, Lecture Notes in Math., Springer-Verlag, New York, Tome 1645 (1996) | MR 1484969 | Zbl 0870.58087

[6] Féjoz, J. Démonstration du théorème d’Arnold sur la stabilité du système planétaire (d’après Herman), Ergodic Th. Dyn. Syst., Tome 24 (2004), pp. 1521-1582 | Article | MR 2104595 | Zbl 1087.37506

[7] Giorgilli, A. On the problem of stability for near to integrable Hamiltonian systems, Proceedings of the International Congress of Mathematicians Berlin 1998, Documenta Mathematica, Documenta Mathematica, Tome III, extra vol.ICM 1998 (1998), pp. 143-152 | MR 1648149 | Zbl 0910.58024

[8] Guzzo, M. Stability of the asteroid belt dynamical system (2003) (Private communication)

[9] Guzzo, M.; Morbidelli, A. Construction of a Nekhorochev like result for the asteroid belt dynamical system, Celestial Mechanics, Tome 66 (1997), pp. 255-292 | Article | MR 1473577 | Zbl 0883.58032

[10] Gwozdziewicz, J. The Lojasiewicz exponent of an analytic function at an isolated zero, Comment. Math. Helv., Tome 74 (1999), pp. 364-375 | Article | MR 1710702 | Zbl 0948.32028

[11] Herman, M. Dynamics connected with indefinite normal torsion, twists mapping and their applications, R.McGehee, K.Meyer, (Eds), IMA Conference Proceedings Series, Springer-Verlag, New York, Tome 44 (1992), pp. 153-182 | MR 1219355 | Zbl 0763.58009

[12] Hironaka, H. Subanalytic sets, Number theory, algebraic geometry and commutative algebra, volume in honor of A.Akizuki, Kinokunya, Tokyo (1973), pp. 453-493 | MR 377101 | Zbl 0297.32008

[13] Ilyashenko, I. S. A steepness test for analytic functions, Russian Math. Surveys, Tome 41 (1986), p. 229-230 | Article | Zbl 0597.32003

[14] Lochak, P. Canonical perturbation theory via simultaneous approximation, Russian Math. Surveys, Tome 47 (1992), pp. 57-133 | Article | MR 1209145 | Zbl 0795.58042

[15] Lochak, P.; Neishtadt, A. I. Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos, Tome 2 (1992), pp. 495-499 | Article | MR 1195881 | Zbl 1055.37573

[16] Lojasiewicz, S. Sur la géométrie semi- et sous-analytique. (On semi- and subanalytic geometry), Ann. Inst. Fourier, Tome 43 (1993), pp. 1575-1595 | Numdam | MR 1275210 | Zbl 0803.32002

[17] Marco, J.-P.; Sauzin, D. Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian Systems, Publ. Math. IHÉS, Tome 96 (2003), pp. 199-275 | Article | Numdam | MR 1986314 | Zbl 01986172

[18] Nekhorochev, N. N. Stable lower estimates for smooth mappings and for gradients of smooth functions, Math. USSR Sbornik, Tome 19 (1973), pp. 425-467 | Article | Zbl 0281.26009

[19] Nekhorochev, N. N. An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Russian Math. Surveys, Tome 32 (1977), pp. 1-65 | Article | MR 501140 | Zbl 0389.70028

[20] Nekhorochev, N. N. An exponential estimate of the time of stability of nearly integrable Hamiltonian systems 2, Trudy Sem. Petrovs., Tome 5 (1979), pp. 5-50 (transl. in O.A.Oleinik, (Ed.), Topics in Modern Mathematics, Petrovskii Semin. (5), New York, Consultant Bureau 1985) | Zbl 0668.34046

[21] Niederman, L. Stability over exponentially long times in the planetary problem, Nonlinearity, Tome 9 (1996), pp. 1703-1751 | Article | MR 1419468 | Zbl 0926.70025

[22] Niederman, L. Exponential stability for small perturbations of steep integrable Hamiltonian systems, Erg. Th. Dyn. Syst., Tome 24 (2004), pp. 593-608 | Article | MR 2054052 | Zbl 1071.37038

[23] Niederman, L. Prevalence of exponential stability among nearly-integrable Hamiltonian systems (2004) (Preprint Orsay, 2004-39, 24pp.; submitted to Erg. Theo. Dyn. Syst.) | MR 2054052 | Zbl 1130.37386

[24] Ploski, A. Multiplicity and the Lojasiewicz exponent, Banach Cent. Publ., Tome 20 (1988), pp. 353-364 | MR 1101851 | Zbl 0661.32018

[25] Pöschel, J. Nekhorochev estimates for quasi-convex Hamiltonian systems, Math. Z., Tome 213 (1993), pp. 187-217 | Article | MR 1221713 | Zbl 0857.70009

[26] Russmann, H. Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regul. Chaotic Dyn., Tome 6 (2001), pp. 119-204 | Article | MR 1843664 | Zbl 0992.37050

[27] Solerno, P. Effective Lojasiewicz inequalities in semialgebraic geometry, Appl. Alg. Eng. Commun. Comput., Tome 2 (1991), pp. 1-14 | Article | MR 1209239 | Zbl 0754.14035

[28] Spivak, M. A comprehensive introduction to differential geometry. V, Publish or Perish, Berkeley (1979) | Zbl 0439.53005