Nous montrons en utilisant des chemins qui ne s'intersectent pas qu'un pavage rhombique d'un hexagone, ou une partition planaire en boîtes, est décrit par un point processus ponctuel déterminentiel, donné par un noyau de Hahn étendu.
We show using non-intersecting paths, that a random rhombus tiling of a hexagon, or a boxed planar partition, is described by a determinantal point process given by an extended Hahn kernel.
Classification : 60K35, 15A32
Mots clés : chemins qui ne s'intersectent pas, mouvement brownien de Dyson, partitions planaires, pavages aléatoires, processus déterminentiels
@article{AIF_2005__55_6_2129_0, author = {Johansson, Kurt}, title = {Non-intersecting, simple, symmetric \- random walks and the extended Hahn kernel}, journal = {Annales de l'Institut Fourier}, pages = {2129--2145}, publisher = {Association des Annales de l'institut Fourier}, volume = {55}, number = {6}, year = {2005}, doi = {10.5802/aif.2155}, zbl = {1083.60079}, mrnumber = {2187949}, language = {en}, url = {www.numdam.org/item/AIF_2005__55_6_2129_0/} }
Johansson, Kurt. Non-intersecting, simple, symmetric \- random walks and the extended Hahn kernel. Annales de l'Institut Fourier, Tome 55 (2005) no. 6, pp. 2129-2145. doi : 10.5802/aif.2155. http://www.numdam.org/item/AIF_2005__55_6_2129_0/
[1] Special Functions, Encyclopedia of Mathematics and its applications, Volume 71, Cambridge University Press, Cambridge, 1999 | MR 1688958 | Zbl 0920.33001
[2] Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles (math.CA/0310278, http://arxiv.org/abs/math.CA/0310278)
[3] The shape of a typical boxed plane partition, New York J. of Math., Volume 4 (1998), pp. 137-165 | MR 1641839 | Zbl 0908.60083
[4] A Brownian-Motion Model for the eigenvalues of a Random Matrix, J. Math. Phys., Volume 3 (1962), pp. 1191-1198 | Article | MR 148397 | Zbl 0111.32703
[5] Matrices coupled in a chain I: Eigenvalue correlations, J. of Phys. A, Volume 31 (1998), pp. 4449-4456 | Article | MR 1628667 | Zbl 0938.15012
[6] Step fluctuations for a faceted crystal, J. Stat. Phys., Volume 113 (2003), pp. 1-46 | Article | MR 2012974 | Zbl 02002354
[7] Correlations for the orthogonal-unitary and symplectic-unitary transitions at the soft and hard edges, Nucl. Phys. B, Volume 553 (1999), pp. 601-643 | Article | MR 1707162 | Zbl 0944.82012
[8] On a discrete Rodrigues' formula and a second class of orthogonal Hahn polynomials (Preprint, Department of Mathematics, Chalmers University of Technology, N° 1977-12)
[9] Discrete orthogonal polynomial ensembles and the Plancherel measure, Annals of Math., Volume 153 (2001), pp. 259-296 | Article | MR 1826414 | Zbl 0984.15020
[10] Non-intersecting paths, random tilings and random matrices, Probab.Theory Relat. Fields, Volume 123 (2002), pp. 225-280 | Article | MR 1900323 | Zbl 1008.60019
[11] Discrete polynuclear growth and determinantal processes, Commun. Math. Phys., Volume 242 (2003), pp. 277-329 | MR 2018275 | Zbl 1031.60084
[12] The Arctic circle and the Airy process (math.PR/0306216, to appear in Ann. Probab., http://arxiv.org/abs/math.PR/0306216) | MR 2118857 | Zbl 1096.60039
[13] Scaling limit of vicious walks and two-matrix model, Phys. Rev. E (2002)
[14] Local statistics of lattice dimers, Ann. Inst. H. Poincaré, Probabilités et Statistiques, Volume 33 (1997), pp. 591-618 | Article | Numdam | MR 1473567 | Zbl 0893.60047
[15] Random Matrices, 2nd ed., Academic Press, San Diego, 1991 | MR 1083764 | Zbl 0780.60014
[16] Classical Orthogonal Polynomials of a Discrete Variable, Springer Series in Computational Physics, Volume Berlin Heidelberg, Berlin Heidelberg, 1991 | MR 1149380 | Zbl 0576.33001
[17] Scale invariance of the PNG droplet and the Airy process, J. Stat. Phys., Volume 108 (2002), pp. 1076-1106 | MR 1933446 | Zbl 1025.82010
[18] Enumerative Combinatorics, Cambridge University Press, Volume 2 (1999) | Zbl 0928.05001
[19] Nonintersecting Paths, Pfaffians, and Plane Partitions, Adv. in Math., Volume 83 (1990), pp. 96-131 | Article | MR 1069389 | Zbl 0790.05007