Propagation estimates for Dirac operators and application to scattering theory
Annales de l'Institut Fourier, Volume 54 (2004) no. 6, p. 2021-2083

In this paper, we prove propagation estimates for a massive Dirac equation in flat spacetime. This allows us to construct the asymptotic velocity operator and to analyse its spectrum. Eventually, using this new information, we are able to obtain complete scattering results; that is to say we prove the existence and the asymptotic completeness of the Dollard modified wave operators.

Dans cet article, nous prouvons plusieurs estimations de propagation pour une équation de Dirac massive en espace-temps plat. Ces estimations nous permettent de construire l'opérateur de vitesse asymptotique et de caractériser son spectre. En utilisant cette nouvelle information, nous obtenons des résultats complets de scattering. Précisèment, nous prouvons l'existence et la complétude asymptotique des opérateurs d'onde modifiés à la Dollard.

DOI : https://doi.org/10.5802/aif.2074
Classification:  35P25,  35Q40,  35B40,  81U99
Keywords: Partial differential equations, spectral theory, scattering theory, Dirac's equation, propagation estimates, Mourre theory
@article{AIF_2004__54_6_2021_0,
     author = {Daud\'e, Thierry},
     title = {Propagation estimates for Dirac operators and application to scattering theory},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {54},
     number = {6},
     year = {2004},
     pages = {2021-2083},
     doi = {10.5802/aif.2074},
     zbl = {1080.35101},
     mrnumber = {2134232},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2004__54_6_2021_0}
}
Propagation estimates for Dirac operators and application to scattering theory. Annales de l'Institut Fourier, Volume 54 (2004) no. 6, pp. 2021-2083. doi : 10.5802/aif.2074. http://www.numdam.org/item/AIF_2004__54_6_2021_0/

[1] W. Amrein; A. Boutet De Monvel; V. Georgescu C 0 -groups, commutator methods and spectral theory of N-body hamiltonians, Birkhäuser Verlag (1996) | MR 1388037 | Zbl 0962.47500

[2] W. Amrein; A. Boutet De Monvel-Berthier; V. Georgescu On Mourre's approach of spectral theory, Helv. Phys. Acta, Tome 62 (1989), pp. 1-20 | MR 991005 | Zbl 0791.47026

[3] E. Baslev; B. Helffer Limiting absorption principle and resonances for the Dirac operator, Adv. in Appl. Math, Tome 13 (1992), pp. 186-215 | MR 1162140 | Zbl 0756.35062

[4] A. Berthier; V. Georgescu On the point spectrum of Dirac operators, J. Func. Anal, Tome 71 (1987), pp. 309-338 | MR 880983 | Zbl 0655.47043

[5] A. Boutet De Monvel-Berthier; D. Manda; R. Purice Limiting absorption principle for the Dirac operator, Ann. Inst. Henri Poincaré, Physique Théorique, Tome 58 (1993) no. 4, pp. 413-431 | Numdam | MR 1241704 | Zbl 0789.35134

[6] E.B. Davies Spectral Theory and Differential Operators, Cambridge studies in advanced mathematics, Tome 2 (1995) | MR 1349825 | Zbl 0893.47004

[7] J. Derezi#X0144;Ski Asymptotic completeness for N-particle long-range quantum sytems, Ann. of Math, Tome 138 (1993), pp. 427-476 | MR 1240577 | Zbl 0844.47005

[8] J. Derezi#X0144;Ski; C. Gérard Scattering Theory of Classical and Quantum N-Particle Systems, Springer-Verlag (1997) | MR 1459161 | Zbl 0899.47007

[9] J. Dollard; G. Velo Asymptotic behaviour of a Dirac particle in a Coulomb field, II, Nuovo Cimento, Tome 45 (1966), pp. 801-812

[10] V. Enss Asymptotic completeness for quantum-mechanical potential scattering, I: Short range potentials., Comm. Math. Phys, Tome 61 (1978), pp. 285-291 | MR 523013 | Zbl 0389.47005

[11] V. Enss Asymptotic completeness for quantum-mechanical potential scattering, II: Singular and Long range potentials, Ann. Phys, Tome 119 (1979), pp. 117-132 | MR 535624 | Zbl 0408.47009

[12] V. Enss; B. Thaller Asymptotic observables and Coulomb scattering for the Dirac equation, Ann. Inst. Henri Poincaré. Physique Théorique, Tome 45 (1986), pp. 147-171 | Numdam | MR 866913 | Zbl 0615.47008

[13] Y. Gâtel; D.R. Yafaev Scattering theory for the Dirac operator with a long-range electromagnetic potential, J. Func. Anal, Tome 184 (2001) no. 1, pp. 136-176 | MR 1846785 | Zbl 0996.35056

[14] V. Georgescu; C. Gérard On the virial theorem in Quantum Mechanics, Comm. Math. Phys, Tome 208 (1999), pp. 275-281 | MR 1729087 | Zbl 0961.81009

[15] V. Georgescu; M. Mântoiu On the spectral theory of singular Dirac type hamiltonians, J. Operator Theory, Tome 46 (2001) no. 2, pp. 289-321 | MR 1870409 | Zbl 0993.35070

[16] C. Gérard; I. Laba Multiparticle quantum scattering in constant magnetic fields, American Mathematical Society, Mathematical surveys and monographs, Tome 90 (2002) | MR 1871447 | Zbl 1044.81123

[17] C. Gérard; F. Nier Scattering theory for the perturbation of periodic Schrödinger operators, J. Math. Kyoto Univ, Tome 38 (1998), pp. 595-634 | MR 1669979 | Zbl 0934.35111

[18] G.M. Graf Asymptotic completeness for N-body short range quantum systems: A new proof, Comm. Math. Phys, Tome 132 (1990), pp. 73-101 | MR 1069201 | Zbl 0726.35096

[19] D. Häfner Sur la théorie de la diffusion pour l'équation de Klein-Gordon dans la métrique de Kerr, Dissertationes Mathematicae, Tome 421 (2003) | MR 2031494 | Zbl 02120135

[20] D. Häfner; J.-P. Nicolas Scattering of massless Dirac fields by a Kerr black hole, Rev. Math. Phys, Tome 16 (2004) no. 1, pp. 29-123 | MR 2047861 | Zbl 1064.83036

[21] B. Helffer; J. Sjöstrand Equation de Schrödinger avec champ magnétique et équation de Harper, Lecture Notes in Physics, Tome 345 (1989), pp. 118-197 | MR 1037319 | Zbl 0699.35189

[22] W. Hunziker; I.M. Sigal; A. Soffer Minimal escape velocities, Comm. Partial Diff. Equ, Tome 24 (1999) no. 11-12, pp. 2279-2295 | MR 1720738 | Zbl 0944.35014

[23] A. Iftimovici; M. Mântoiu Limiting Absorption Principle at Critical Values for the Dirac Operator, Lett. Math. Phys, Tome 49 (1999) no. 3, pp. 235-243 | MR 1743451 | Zbl 0957.47029

[24] F. Melnyk Scattering on Reissner-Nordström metric for massive charged spin 1 2 fields, Ann. Henri Poincaré, Tome 4 (2003) no. 5, pp. 813-846 | MR 2016993 | Zbl 02038428

[25] E. Mourre Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys, Tome 78 (1981), pp. 391-408 | MR 603501 | Zbl 0489.47010

[26] Pl. Muthuramalingam; K.B. Sinha Existence and completeness of wave operators for the Dirac operator in an electro-magnetic field with long range potentials, J. Indian Math. Soc, Tome 50 (1986) no. 1-4, pp. 103-130 | MR 989018 | Zbl 0688.35070

[27] J.-P. Nicolas Scattering of linear Dirac fields by a pherically symmetric Black-Hole, Ann. Inst. Henri Poincaré. Physique Théorique, Tome 62 (1995) no. 2, pp. 145-179 | Numdam | MR 1317184 | Zbl 0826.53072

[28] M. Reed; B. Simon Methods of modern mathematical physics. I, Academic Press (1972) | MR 751959 | Zbl 0401.47001

[28] M. Reed; B. Simon Methods of modern mathematical physics. II, Academic Press (1975) | MR 751959 | Zbl 0401.47001

[28] M. Reed; B. Simon Methods of modern mathematical physics. III, Academic Press (1979) | MR 529429 | Zbl 0405.47007

[28] M. Reed; B. Simon Methods of modern mathematical physics. IV, Academic Press (1978) | MR 751959 | Zbl 0401.47001

[29] D. Ruelle A remark on bound states in potential scattering theory, Nuovo Cimento, A, Tome 61 (1969) | MR 246603

[30] I.M. Sigal; A. Soffer The N-particle scattering problem: asymptotic completeness for short-range quantum systems, Ann. of Math, Tome 125 (1987), pp. 35-108 | MR 898052 | Zbl 0646.47009

[31] I.M. Sigal; A. Soffer Local decay and velocity bounds (1988) (Preprint, Princeton University)

[32] B. Thaller The Dirac Equation, Springer-Verlag, Texts and monographs in Physics (1992) | MR 1219537 | Zbl 0765.47023