We build two embedded resolution procedures of a quasi-ordinary singularity of complex analytic hypersurface, by using toric morphisms which depend only on the characteristic monomials associated to a quasi-ordinary projection of the singularity. This result answers an open problem of Lipman in Equisingularity and simultaneous resolution of singularities, Resolution of Singularities, Progress in Mathematics No. 181, 2000, 485- 503. In the first procedure the singularity is embedded as hypersurface. In the second procedure, which is inspired by a work of Goldin and Teissier for plane curves (see Resolving singularities of plane analytic branches with one toric morphism, loc. cit., pages 315-340), we re-embed the singularity in an affine space of bigger dimension in such a way that one toric morphism provides its embedded resolution. We compare both procedures and we show that they coincide under suitable hypothesis.
Nous construisons deux procédés de résolution plongée d'un germe de singularité quasi- ordinaire d'hypersurface analytique complexe qui ne dépendent que des monômes caractéristiques associés à une projection quasi-ordinaire du germe. Ce résultat est une solution à l'un des problèmes ouverts posés par Lipman dans Equisingularity and simultaneous resolution of singularities, Resolution of Singularities, Progress in Mathematics No. 181, 2000, 485-503. Dans le premier procédé la singularité est plongée comme hypersurface. Dans le deuxième procédé, qui est inspiré par un travail de Goldin et Teissier pour les germes de courbes planes (voir Resolving singularities of plane analytic branches with one toric morphism, loc. cit., pages 315-340), la singularité est replongée convenablement dans un espace affine de dimension plus grande et nous construisons des résolutions plongées avec un seul morphisme torique. Nous comparons ces deux procédés et nous montrons qu'ils coïncident sous certaines hypothèses.
Keywords: singularities, embedded resolution, discriminant, topological type
Mot clés : singularités, résolutions plongées, discriminants, type topologique
@article{AIF_2003__53_6_1819_0, author = {Gonz\'alez P\'erez, Pedro D.}, title = {Toric embedded resolutions of quasi-ordinary hypersurface singularities}, journal = {Annales de l'Institut Fourier}, pages = {1819--1881}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {6}, year = {2003}, doi = {10.5802/aif.1993}, mrnumber = {2038781}, zbl = {1052.32024}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1993/} }
TY - JOUR AU - González Pérez, Pedro D. TI - Toric embedded resolutions of quasi-ordinary hypersurface singularities JO - Annales de l'Institut Fourier PY - 2003 SP - 1819 EP - 1881 VL - 53 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1993/ DO - 10.5802/aif.1993 LA - en ID - AIF_2003__53_6_1819_0 ER -
%0 Journal Article %A González Pérez, Pedro D. %T Toric embedded resolutions of quasi-ordinary hypersurface singularities %J Annales de l'Institut Fourier %D 2003 %P 1819-1881 %V 53 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1993/ %R 10.5802/aif.1993 %G en %F AIF_2003__53_6_1819_0
González Pérez, Pedro D. Toric embedded resolutions of quasi-ordinary hypersurface singularities. Annales de l'Institut Fourier, Volume 53 (2003) no. 6, pp. 1819-1881. doi : 10.5802/aif.1993. http://www.numdam.org/articles/10.5802/aif.1993/
[A'C-Ok] Geometry of plane curves via Tschirnhausen resolution tower, Osaka J. Math, Volume 33 (1996), pp. 1003-1033 | MR | Zbl
[A-M] Newton-Puiseux Expansion and Generalized Tschirnhausen Transformation I-II, J. reine angew. Math, Volume 260 (1973), pp. 47-83 | DOI | MR | Zbl
[A-M] Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II., J. Reine Angew. Math., Volume 261 (1973), pp. 29-54 | MR | Zbl
[A1] On the ramification of algebraic functions., Amer. J. Math., Volume 77 (1955), pp. 575-592 | DOI | MR | Zbl
[A2] Inversion and invariance of characteristic pairs, Amer. J. Math, Volume 89 (1967), pp. 363-372 | DOI | MR | Zbl
[A3] Expansion Techniques in Algebraic Geometry, Tata Instit. Fund. Research, Bombay (1977)
[B-M] Canonical resolution of a quasi-ordinary surface singularity, Canad. J. Math., Volume 52 (2000) no. 6, pp. 1149-1163 | DOI | MR | Zbl
[B-P-V] Compact Complex Surfaces, Annals of Math. Studies (3), Springer-Verlag, 1984 | MR | Zbl
[Bbk] Algebre commutative, Chap. I-IV, Masson, 1981 | MR | Zbl
[Ca] Algebroid Curves in positive characteristic, Lecture Notes in Mathematics, 813, Springer, Berlin, 1980 | MR | Zbl
[Co] Toric Varieties and Toric Resolutions, Resolution of Singularities. A research textbook in tribute to Oscar Zariski (Progress in Mathematics), Volume 181 (2000), pp. 259-283 | Zbl
[Eg] Polarinvarianten und die Topologie von Kurvensingularitaten, Bonner Mathematische Schriften, Volume 147 (1983) | MR | Zbl
[Ew] Combinatorial Convexity and Algebraic Geometry, Springer-Verlag, 1996 | MR | Zbl
[F] Introduction to Toric Varieties, Annals of Math. Studies, 131, Princeton University Press, 1993 | MR | Zbl
[G-P] On the Approximate Roots of Polynomials, Annales Polonici Mathematici, Volume LX (1995) no. 3, pp. 199-210 | MR | Zbl
[G-T] Resolving singularities of plane analytic branches with one toric morphism, Resolution of Singularities. A research textbook in tribute to Oscar Zariski. (Progress in Mathematics), Volume 181 (2000), pp. 315-340 | Zbl
[Gau] Embedded Topological classification of quasi-ordinary singularities, Memoirs of the American Mathematical Society, Volume 388 (1988) | MR | Zbl
[GB-GP] Decomposition in bunches of the critical locus of a quasi-ordinary map (submitted). | Zbl
[GB1] Invariants des singularités de courbes planes et courbure des fibres de Milnor (1996) Tesis Doctoral, Universidad de La Laguna (Spain)
[GB2] Sur les courbes polaires d'une courbe plane réduite, Proc. London Math. Soc, Volume 81 (2000) no. 1, pp. 1-28 | DOI | MR | Zbl
[GP-M-N] The zeta function of a quasi-ordinary singularity II (to appear in R. Michler Memorial, Proc. Amer. Math. Soc.) | MR | Zbl
[GP-T] Toric embedded resolution of non necessarily normal toric varieties, to appear in C. R. Acad. Sci. Paris, Sér. I Math. | Zbl
[GP1] Singularités quasi-ordinaires toriques et polyèdre de Newton du discriminant, Canadian J. Math., Volume 52 (2000) no. 2, pp. 348-368 | DOI | MR | Zbl
[GP2] Quasi-ordinary singularities via toric geometry (2000) (Tesis Doctoral, Universidad de La Laguna)
[GP3] The semigroup of a quasi-ordinary hypersurface (to appear in J. Inst. Math. Jussieu) | MR
[GS-LJ] Modèles canoniques plongés. I, Kodai Math. J., Volume 14 (1991) no. 2, pp. 194-209 | DOI | MR | Zbl
[J] Darstellung der Funktionen eines algebraischen Körpers zweier unabhaängigen Veränderlichen , in der Umgebung einer stelle , , J. reine angew. Math., Volume 133 (1908), pp. 289-314 | DOI | JFM
[K-K-M-S] Toroidal Embeddings, Springer Lecture Notes in Mathematics, 339, Springer Verlag, 1973 | Zbl
[Kou] Polyèdres de Newton et nombres de Milnor, Inv. Mat, Volume 32 (1976), pp. 1-31 | DOI | MR | Zbl
[L-M-W] Sur le comportement des polaires associées aux germes de courbes planes, Compositio Math., Volume 72 (1989) no. 1, pp. 87-113 | Numdam | MR | Zbl
[L1] Quasi-ordinary singularities of embedded surfaces (1965) (Thesis, Harvard University)
[L2] Introduction to Resolution of Singularities, Proceedings of Symposia in Pure Mathematics, Volume 29 (1975), pp. 187-230 | MR | Zbl
[L3] Quasi-ordinary singularities of surfaces in , Proceedings of Symposia in Pure Mathematics, Volume 40 (1983) no. 2, pp. 161-172 | MR | Zbl
[L4] Topological invariants of quasi-ordinary singularities, Memoirs of the American Mathematical Society, Volume 388 (1988) | MR | Zbl
[L5] Equisingularity and simultaneous resolution of singularities, Resolution of Singularities. A research textbook in tribute to Oscar Zariski. (Progress in Mathematics), Volume 181 (2000), pp. 485-503 | Zbl
[Lau] Normal two dimensional singularities, Annals of Math. Studies, 71, Princenton University Press, 1971 | MR | Zbl
[Le-Ok] On resolution complexity of plane curves, Kodaira Math. J, Volume 18 (1995), pp. 1-36 | DOI | MR | Zbl
[LJ] Sur l'équivalence des singularités des courbes algebro\" \i des planes (coefficients de Newton), Introduction à la théorie des singularités I (1988), pp. 49-154 | Zbl
[LJ-R] Arcs and wedges on sandwiched surface singularities, Amer. J. Math, Volume 121 (1999) no. 6, pp. 1191-1213 | DOI | MR | Zbl
[LJ-R2] Desingularization of both a plane branch and its monomial curve (2000) (Manuscript)
[Lu] On the structure of embedded algebroid surfaces, Proceedings of Symposia in Pure Mathematics, Volume 40 (1983), pp. 185-193 | MR | Zbl
[M-N] The zeta function of a quasi-ordinary singularity I (to appear in Compositio Math.) | MR | Zbl
[Me] Invariants polaires des courbes planes, Inv. Math., Volume 41 (1977), pp. 103-111 | DOI | MR | Zbl
[Mu] The Red Book on Varieties and Schemes, Lecture Notes in Mathematics, 1358, Springer-Verlag, 1988 | MR | Zbl
[Od] Convex Bodies and Algebraic Geometry, Annals of Math. Studies, 131, Springer-Verlag, 1988 | MR | Zbl
[Ok] Geometry of plane curves via toroidal resolution, Algebraic Geometry and Singularities (Progress in Mathematics), Volume 139 (1996) | Zbl
[PP1] Approximate roots, Valuation Theory and its Applications (Fields Inst. Communications Ser.), Volume vol. II | Zbl
[PP2] Arbres de contact des singularités quasi-ordinaires et graphes d'adjacence pour les 3-variétés réelles (2001) (Thèse de Doctorat, Université de Paris 7)
[Re] A summary of results on the topological classification of plane algebroid singularities, Rend. Sem. Mat. Univ. e Politec. Torino (1954-55), Volume 14, pp. 159-187 | Zbl
[St] Gröbner Bases and Convex Polytopes, University Lecture Series, Vol 8, American Mathematical Society, 1996 | MR | Zbl
[T1] The monomial curve and its deformations. Appendix in [Z6]
[T2] Valuations, Deformations and Toric Geometry, Valuation Theory and its Applications. (Fields Inst. Communications Ser.), Volume vol. II | Zbl
[V1] Constructiveness of Hironaka's resolution., Ann. Sci. Ecole Norm. Sup. (4), Volume 22 (1989) no. 1, pp. 1-32 | Numdam | MR | Zbl
[V2] On Equiresolution and a question of Zariski, Acta Math, Volume 185 (2000), pp. 123-159 | DOI | MR | Zbl
[W] Reduction of the Singularities of an Algebraic Surface, Annals of Maths, Volume 36 (1935) no. 2, pp. 336-365 | DOI | JFM | MR
[Wa] Chains on the Eggers tree and polar curves, Revista Mat. Iberoamericana, Volume 19 (2003), pp. 1-10 | MR | Zbl
[Z1] Le probléme de la réduction des singularités d'une variété algébrique, Bull. Sci. Mathématiques, Volume 78 (1954), pp. 31-40 | MR | Zbl
[Z2] The connectedness theorem for birrational transformations, Algebraic Geometry and Topology (Symposium in honor of S. Lefschetz) (1955), pp. 182-188 | Zbl
[Z3] Studies in Equisingularity. I., Amer. J. Math., Volume 87 (1965), pp. 507-536 | MR | Zbl
[Z3] Studies in equisingularity. II., Amer. J. Math., Volume 87 (1965), pp. 972-1006 | MR | Zbl
[Z3] Collected Papers, IV (1979)
[Z4] Contributions to the problem of equisingularity, Questions on Algebraic varieties. (C.I.M.E., III ciclo, Varenna 7-17 Settembre 1969) (1970), pp. 261-343 | Zbl
[Z4] Collected papers, IV (1979)
[Z5] Exceptional Singularities of an Algebroid Surface and their Reduction, Atti. Accad. Naz. Lincei Rend., Cl. Sci. Fis. Mat. Natur. (8), Volume 43 (1967), pp. 135-146 | MR | Zbl
[Z5] Collected papers, I (1979)
[Z6] Le problème des modules pour les branches planes, Hermann, Paris, 1986 | MR | Zbl
Cited by Sources: