Besicovitch subsets of self-similar sets
Annales de l'Institut Fourier, Volume 52 (2002) no. 4, p. 1061-1074

Let $E$ be a self-similar set with similarities ratio ${r}_{j}\left(0\le j\le m-1\right)$ and Hausdorff dimension $s$, let $\stackrel{\to }{p}\left({p}_{0},{p}_{1}\right)...{p}_{m-1}$ be a probability vector. The Besicovitch-type subset of $E$ is defined as $E\left(\stackrel{\to }{p}\right)=\left\{x\in E:\underset{n\to \infty }{lim}\frac{1}{n}\sum _{k=1}^{n}{\chi }_{j}\left({x}_{k}\right)={p}_{j},\phantom{\rule{1em}{0ex}}0\le j\le m-1\right\},$ where ${\chi }_{j}$ is the indicator function of the set $\left\{j\right\}$. Let $\alpha ={dim}_{H}\left(E\left(\stackrel{\to }{p}\right)\right)={dim}_{P}\left(E\left(\stackrel{\to }{p}\right)\right)=\frac{{\sum }_{j=0}^{m-1}{p}_{j}log{p}_{j}}{{\sum }_{j=0}^{m-1}{p}_{i}log{r}_{j}}$ and $g$ be a gauge function, then we prove in this paper:(i) If $\stackrel{\to }{p}=\left({r}_{0}^{s},{r}_{1}^{s},\cdots ,{r}_{m-1}^{s}\right)$, then ${ℋ}^{s}\left(E\left(\stackrel{\to }{p}\right)\right)={ℋ}^{s}\left(E\right),\phantom{\rule{0.277778em}{0ex}}{𝒫}^{s}\left(E\left(\stackrel{\to }{p}\right)\right)={𝒫}^{s}\left(E\right),$ moreover both of ${ℋ}^{s}\left(E\right)$ and ${𝒫}^{s}\left(E\right)$ are finite positive;(ii) If $\stackrel{\to }{p}$ is a positive probability vector other than $\left({r}_{0}^{s},{r}_{1}^{s},\cdots ,{r}_{m-1}^{s}\right)$, then the gauge functions can be partitioned as follows ${ℋ}^{g}\left(E\left(\stackrel{\to }{p}\right)\right)=+\infty ⇔\underset{t\to 0}{\overline{\mathrm{lim}}}\frac{logg\left(t\right)}{logt}\le \alpha ;\phantom{\rule{4pt}{0ex}}{ℋ}^{g}\left(E\left(\stackrel{\to }{p}\right)\right)=0⟺\underset{t\to 0}{\overline{\mathrm{lim}}}\frac{logg\left(t\right)}{logt}>\alpha ,$ ${𝒫}^{g}\left(E\left(\stackrel{\to }{p}\right)\right)=+\infty ⟺\underset{t\to 0}{\underline{\mathrm{lim}}}\frac{logg\left(t\right)}{logt}\le \alpha ;\phantom{\rule{4pt}{0ex}}{𝒫}^{g}\left(E\left(\stackrel{\to }{p}\right)\right)=0⟺\underset{t\to 0}{\underline{\mathrm{lim}}}\frac{logg\left(t\right)}{logt}>\alpha .$

Soit $E$ un ensemble auto-similaire avec coefficients de similarité ${r}_{j}\left(0\le j\le m-1\right)$ et de dimension de Hausdorff $s$, et soit $\stackrel{\to }{p}=\left({p}_{0},{p}_{1}\right)...{p}_{m-1}$ un vecteur de probabilité. Le sous-ensemble de type de Besicovitch de $E$ est défini par $E\left(\stackrel{\to }{p}\right)=\left\{x\in E:\underset{n\to \infty }{lim}\frac{1}{n}\sum _{k=1}^{n}{\chi }_{j}\left({x}_{k}\right)={p}_{j},\phantom{\rule{1em}{0ex}}0\le j\le m-1\right\},$${\chi }_{j}$ est la fonction indicatrice de l’ensemble $\left\{j\right\}$. Soient $\alpha ={dim}_{H}\left(E\left(\stackrel{\to }{p}\right)\right)={dim}_{P}\left(E\left(\stackrel{\to }{p}\right)\right)=\frac{{\sum }_{j=0}^{m-1}{p}_{j}log{p}_{j}}{{\sum }_{j=0}^{m-1}{p}_{i}log{r}_{j}}$ et $g$ une fonction de jauge, on va démontrer dans cet article :(i) Si $\stackrel{\to }{p}=\left({r}_{0}^{s},{r}_{1}^{s},\cdots ,{r}_{m-1}^{s}\right)$, alors ${ℋ}^{s}\left(E\left(\stackrel{\to }{p}\right)\right)={ℋ}^{s}\left(E\right),\phantom{\rule{0.277778em}{0ex}}{𝒫}^{s}\left(E\left(\stackrel{\to }{p}\right)\right)={𝒫}^{s}\left(E\right),$ de plus, ${ℋ}^{s}\left(E\right)$ et ${𝒫}^{s}\left(E\right)$ sont positifs et finis;(ii) Si $\stackrel{\to }{p}$ est un vecteur de probabilité différent de $\left({r}_{0}^{s},{r}_{1}^{s},\cdots ,{r}_{m-1}^{s}\right)$, alors on peut classer les fonctions de jauge comme suit : ${ℋ}^{g}\left(E\left(\stackrel{\to }{p}\right)\right)=+\infty ⇔\underset{t\to 0}{\overline{\mathrm{lim}}}\frac{logg\left(t\right)}{logt}\le \alpha ;\phantom{\rule{4pt}{0ex}}{ℋ}^{g}\left(E\left(\stackrel{\to }{p}\right)\right)=0⟺\underset{t\to 0}{\overline{\mathrm{lim}}}\frac{logg\left(t\right)}{logt}>\alpha ,$ ${𝒫}^{g}\left(E\left(\stackrel{\to }{p}\right)\right)=+\infty ⟺\underset{t\to 0}{\underline{\mathrm{lim}}}\frac{logg\left(t\right)}{logt}\le \alpha ;\phantom{\rule{4pt}{0ex}}{𝒫}^{g}\left(E\left(\stackrel{\to }{p}\right)\right)=0⟺\underset{t\to 0}{\underline{\mathrm{lim}}}\frac{logg\left(t\right)}{logt}>\alpha .$

DOI : https://doi.org/10.5802/aif.1911
Classification:  28A80,  28A78,  26A30
Keywords: perturbation measures, gauge functions, Besicovitch set
@article{AIF_2002__52_4_1061_0,
author = {Ma, Ji-Hua and Wen, Zhi-Ying and Wu, Jun},
title = {Besicovitch subsets of self-similar sets},
journal = {Annales de l'Institut Fourier},
publisher = {Association des Annales de l'institut Fourier},
volume = {52},
number = {4},
year = {2002},
pages = {1061-1074},
doi = {10.5802/aif.1911},
zbl = {1024.28005},
mrnumber = {1926673},
language = {en},
url = {http://www.numdam.org/item/AIF_2002__52_4_1061_0}
}

Ma, Ji-Hua; Wen, Zhi-Ying; Wu, Jun. Besicovitch subsets of self-similar sets. Annales de l'Institut Fourier, Volume 52 (2002) no. 4, pp. 1061-1074. doi : 10.5802/aif.1911. http://www.numdam.org/item/AIF_2002__52_4_1061_0/

[1] A.S. Besicovitch On the sum of digits of real numbers represented in the dyadic system, Math. Ann, Tome 110 (1934), pp. 321-330 | Article | JFM 60.0949.01 | MR 1512941 | Zbl 0009.39503

[2] H.G. Eggleston The fractional dimension of a set defined by decimal properties, Quart. J. Math. Oxford Ser, Tome 20 (1949), pp. 31-36 | Article | MR 31026 | Zbl 0031.20801

[3] K.J. Falconer Techniques in Fractal Geometry, John Wiley and sons inc. (1997) | MR 1449135 | Zbl 0869.28003

[4] R. Kaufman A further example on scales of Hausdorff functions, J. London Math. Soc, Tome 8 (1974) no. 2, p. 585-586 | Article | MR 357721 | Zbl 0302.28015

[5] M. Moran; J. Rey Singularity of self-similar measures with respect to Hausdorff measures, Trans. of Amer. Math. Soc., Tome 350 (1998) no. 6, pp. 2297-2310 | Article | MR 1475691 | Zbl 0899.28002

[6] Y. Peres The self-affine carpets of McMullen and Bedford have infinite Hausdorff measure, Math. Proc. Camb. Phil. Soc, Tome 116 (1994), pp. 513-526 | Article | MR 1291757 | Zbl 0811.28005

[7] A.N. Shiryayev Probability, Springer-Verlag, New York (1984) | MR 737192 | Zbl 0536.60001

[8] J. Taylor The measure theory of random fractals, Math. Proc. Cambridge Philo. Soc, Tome 100 (1986), pp. 383-408 | Article | MR 857718 | Zbl 0622.60021