Nous explorons la question de détermination de l’image des représentations galoisiennes modulaires -adiques sans multiplication complexe et montrons que pour un ensemble “générique” de formes modulaires -adiques (formes propres normalisées sans multiplication complexe), elles ont toutes une image contenant .
We explore the question of how big the image of a Galois representation attached to a -adic modular form with no complex multiplication is and show that for a “generic” set of -adic modular forms (normalized, ordinary eigenforms with no complex multiplication), all have a large image.
Classification : 11F80, 11F11, 11F85, 11R23
Mots clés : forme modulaire, famille -adique, représentation galoisienne, forme modulaire -adique
@article{AIF_2002__52_2_351_0, author = {Fischman, Ami}, title = {On the image of $\Lambda $-adic {Galois} representations}, journal = {Annales de l'Institut Fourier}, pages = {351--378}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {2}, year = {2002}, doi = {10.5802/aif.1890}, zbl = {1020.11037}, mrnumber = {1906479}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1890/} }
TY - JOUR AU - Fischman, Ami TI - On the image of $\Lambda $-adic Galois representations JO - Annales de l'Institut Fourier PY - 2002 DA - 2002/// SP - 351 EP - 378 VL - 52 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1890/ UR - https://zbmath.org/?q=an%3A1020.11037 UR - https://www.ams.org/mathscinet-getitem?mr=1906479 UR - https://doi.org/10.5802/aif.1890 DO - 10.5802/aif.1890 LA - en ID - AIF_2002__52_2_351_0 ER -
Fischman, Ami. On the image of $\Lambda $-adic Galois representations. Annales de l'Institut Fourier, Tome 52 (2002) no. 2, pp. 351-378. doi : 10.5802/aif.1890. http://www.numdam.org/articles/10.5802/aif.1890/
[DHI98] Discriminant of Hecke fields and twisted adjoint -values for , Invent. Math., Volume 134 (1998) no. 3, pp. 547-577 | Article | MR 1660929 | Zbl 0924.11035
[Eis95] Commutative algebra with a view toward algebraic geometry, Springer-Verlag, New York, 1995 | MR 1322960 | Zbl 0819.13001
[FT93] Algebraic number theory, Cambridge University Press, Cambridge, 1993 | MR 1215934 | Zbl 0744.11001
[Gou92] On the ordinary Hecke algebra, J. Number Theory, Volume 41 (1992) no. 2, pp. 178-198 | Article | MR 1164797 | Zbl 0774.11026
[Hid00] Modular forms and Galois cohomology, Cambridge University Press, Cambridge, 2000 | MR 1779182 | Zbl 0952.11014
[Hid86a] Galois representations into attached to ordinary cusp forms, Invent. Math., Volume 85 (1986) no. 3, pp. 545-613 | Article | MR 848685 | Zbl 0612.10021
[Hid86b] Hecke algebras for and , Séminaire de théorie des nombres, Paris 1984--85 (1986), pp. 131-163 | Zbl 0648.10020
[Hid86c] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4), Volume 19 (1986) no. 2, pp. 231-273 | Numdam | MR 868300 | Zbl 0607.10022
[Hid87] Galois representations and the theory of p-adic Hecke algebras, Sugaku, in Japanese, Volume 39 (1987), pp. 124-139 | Zbl 0641.10025
[Hid89] p-adic hecke algebras and galois representations, Sugaku Expositions 2, (English translation of Hid87), Volume 87 (1989) no. 1, pp. 75-102 | Zbl 0686.10023
[Hid93] Elementary theory of L-functions and Eisenstein series, Cambridge University Press, Cambridge, 1993 | MR 1216135 | Zbl 0942.11024
[Mom81] On the l-adic representations attached to modular forms, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., Volume 28 (1981) no. 1, pp. 89-109 | MR 617867 | Zbl 0482.10023
[MW86] On p-adic analytic families of Galois representations, Compositio Math., Volume 59 (1986) no. 2, pp. 231-264 | Numdam | MR 860140 | Zbl 0654.12008
[Rib85] On l-adic representations attached to modular forms II, Glasgow Math. J., Volume 27 (1985), pp. 185-194 | Article | MR 819838 | Zbl 0596.10027
[Ser81] Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. (1981) no. 54, pp. 323-401 | Numdam | MR 644559 | Zbl 0496.12011
[Sha94] Basic algebraic geometry. 2, Schemes and complex manifolds. Translated from the Russian edition by Miles Reid, Springer-Verlag, Berlin, 1994 | MR 1328834 | Zbl 0797.14002
[Shi71] Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Volume No. 11 (1971) | Zbl 0221.10029
Cité par Sources :