Green, Richard M.; Losonczy, Jozsef
Fully commutative Kazhdan-Lusztig cells  [ Cellules pleinement commutatives de Kazhdan-Lusztig ]
Annales de l'institut Fourier, Tome 51 (2001) no. 4 , p. 1025-1045
Zbl 1008.20036 | MR 1849213
doi : 10.5802/aif.1843
URL stable : http://www.numdam.org/item?id=AIF_2001__51_4_1025_0

Classification:  20C08,  20F55
Mots clés: base canonique, théorie des cellules, groupe de Coxeter, algèbre de Hecke, base de Kazhdan-Lusztig, algèbre de Temperley-Lieb
Nous étudions la compatibilité entre l'ensemble des éléments pleinement commutatifs d'un groupe de Coxeter et les divers types de cellules de Kazhdan-Lusztig, en utilisant une base canonique pour une version généralisée de l'algèbre de Temperley-Lieb.
We investigate the compatibility of the set of fully commutative elements of a Coxeter group with the various types of Kazhdan-Lusztig cells using a canonical basis for a generalized version of the Temperley-Lieb algebra.

Bibliographie

[1] F. Du Cloux Coxeter Version 1.01, Université de Lyon, France (1991)

[2] C.K. Fan A Hecke algebra quotient and properties of commutative elements of a Weyl group (1995) (Ph.D. thesis, M.I.T.)

[3] C.K. Fan; R.M. Green Monomials and Temperley--Lieb algebras, J. Algebra, 190 (1997), p. 498 -517 Article  MR 1441960 | Zbl 0899.20018

[4] C.K. Fan; J.R. Stembridge Nilpotent orbits and commutative elements, J. Algebra, 196 (1997), p. 490 -498 Article  MR 1475121 | Zbl 0915.20019

[5] D. Garfinkle On the classification of primitive ideals for complex classical Lie algebras, I, Compositio Math., 75 (1990), p. 135 -169 Numdam | MR 1065203 | Zbl 0737.17003

[6] D. Garfinkle On the classification of primitive ideals for complex classical Lie algebras, II, Compositio Math., 81 (1992), p. 307 -336 Numdam | MR 1149172 | Zbl 0762.17007

[7] D. Garfinkle On the classification of primitive ideals for complex classical Lie algebras, III, Compositio Math., 88 (1993), p. 187 -234 Numdam | MR 1237920 | Zbl 0798.17007

[8] J.J. Graham Modular representations of Hecke algebras and related algebras (1995) (Ph.D. thesis, University of Sydney)

[9] R.M. Green Generalized Temperley--Lieb algebras and decorated tangles, J. Knot Theory Ramifications, 7 (1998), p. 155 -171 Article  MR 1618912 | Zbl 0926.20005

[10] R.M. Green Decorated tangles and canonical bases (Preprint) MR 1872116 | Zbl 0998.20007

[11] R.M. Green; J. Losonczy Canonical bases for Hecke algebra quotients, Math. Res. Lett., 6 (1999), p. 213 -222 MR 1689211 | Zbl 0961.20007

[12] R.M. Green; J. Losonczy A projection property for Kazhdan--Lusztig bases, Internat. Math. Res. Notices, 1 (2000), p. 23 -34 Article  MR 1741607 | Zbl 0961.20008

[13] J.E. Humphreys Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge (1990) MR 1066460 | Zbl 0768.20016

[14] D. Kazhdan; G. Lusztig Representations of Coxeter groups and Hecke algebras, Invent. Math., 53 (1979), p. 165 -184 Article  MR 560412 | Zbl 0499.20035

[15] J. Losonczy The Kazhdan--Lusztig basis and the Temperley--Lieb quotient in type D, J. Algebra, 233 (2000), p. 1 -15 Article  MR 1793587 | Zbl 0969.20003

[16] G. Lusztig Cells in affine Weyl groups, II, J. Algebra, 109 (1987), p. 536 -548 Article  MR 902967 | Zbl 0625.20032

[17] J.R. Stembridge On the fully commutative elements of Coxeter groups, J. Algebraic Combin., 5 (1996), p. 353 -385 Article  MR 1406459 | Zbl 0864.20025