Le but de cet article est d’établir un lien entre différents sujets tels que les - matrices dynamiques, les bialgèbroïdes de Lie et les sous-algèbres lagrangiennes. Notre méthode se base sur la théorie des structures de Dirac et algébroïdes de Courant. En particulier, nous donnons une nouvelle méthode pour classifier les -matrices dynamiques des algèbres de Lie simples , et prouvons que ces -matrices dynamiques sont en bijection avec certaines sous-algèbres lagrangiennes de .
The purpose of this paper is to establish a connection between various objects such as dynamical -matrices, Lie bialgebroids, and Lagrangian subalgebras. Our method relies on the theory of Dirac structures and Courant algebroids. In particular, we give a new method of classifying dynamical -matrices of simple Lie algebras , and prove that dynamical -matrices are in one-one correspondence with certain Lagrangian subalgebras of .
Classification : 53D17, 17B62, 58H05, 70G45
Mots clés : -matrice dynamique, structure de Dirac, bialgébroïde de Lie, algébroïde de Courant, sous-algèbre lagrangienne
@article{AIF_2001__51_3_835_0, author = {Liu, Zhang-Ju and Xu, Ping}, title = {Dirac structures and dynamical $r$-matrices}, journal = {Annales de l'Institut Fourier}, pages = {835--859}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {3}, year = {2001}, doi = {10.5802/aif.1838}, zbl = {1029.53088}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1838/} }
TY - JOUR AU - Liu, Zhang-Ju AU - Xu, Ping TI - Dirac structures and dynamical $r$-matrices JO - Annales de l'Institut Fourier PY - 2001 DA - 2001/// SP - 835 EP - 859 VL - 51 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1838/ UR - https://zbmath.org/?q=an%3A1029.53088 UR - https://doi.org/10.5802/aif.1838 DO - 10.5802/aif.1838 LA - en ID - AIF_2001__51_3_835_0 ER -
Liu, Zhang-Ju; Xu, Ping. Dirac structures and dynamical $r$-matrices. Annales de l'Institut Fourier, Tome 51 (2001) no. 3, pp. 835-859. doi : 10.5802/aif.1838. http://www.numdam.org/articles/10.5802/aif.1838/
[1] Invariant varieties through singularities of holomorphic vector fields, Annals of Math. (2), Volume 115 (1982) | Zbl 0503.32007
[1] Universal solutions of quantum dynamical Yang-Baxter equation, Lett. Math. Phys., Volume 44 (1998), pp. 201-214 | Article | Zbl 0973.81047
[2] Classical dynamical r-matrices for Calogero-Moser systems and their generalizations, Volume q-alg/9706024
[3] Equation de Yang-Baxter dynamique classique et algebroïdes de Lie, C. R. Acad. Sci. Paris, Série I, Volume 327 (1998), pp. 541-546 | Zbl 0973.58007
[4] Triangle equations and simple Lie algebras, Math. Phys. Review, Volume 4 (1984), pp. 93-165 | Zbl 0553.58040
[5] The r-matrix structure of the Euler-Calogero-Moser model, Phys. Lett. A, Volume 186 (1994), pp. 114-118 | Article | Zbl 0941.37514
[6] Exact Yangian symmetry in the classical Euler-Calogero-Moser model, Phys. Lett. A, Volume 188 (1994), pp. 263-271 | Article | Zbl 0941.37512
[7] Dirac manifolds, Trans. A.M.S., Volume 319 (1990), pp. 631-661 | Article | Zbl 0850.70212
[8] Quasi-Hopf algebras, Leningrad Math. J., Volume 2 (1991), pp. 829-860 | Zbl 0728.16021
[9] On Poisson homogeneous spaces of Poisson-Lie groups, Theor. Math. Phys., Volume 95 (1993), pp. 524-525 | Article | Zbl 0852.22018
[10] Geometry and classification of solutions of the classical dynamical Yang-Baxter equation, Comm. Math. Phys., Volume 192 (1998), pp. 77-120 | Article | Zbl 0915.17018
[11] Conformal field theory and integrable systems associated to elliptic curves, Proc. Int. Congr. Math. Zürich (1994), pp. 1247-1255 | Zbl 0852.17014
[12] Quasi-Hopf deformation of quantum groups, Lett. Math. Phys., Volume 40 (1997), pp. 117-134 | Article | Zbl 0882.17006
[13] Quasi-Hopf twistors for elliptic quantum groups, Transform. Groups, Volume 4 (1999), pp. 303-327 | Article | Zbl 0977.17012
[14] Poisson homogeneous spaces of Poisson-Lie groups (1997) (Ph. D. thesis, The institute of low temperature, Kharkov)
[15] Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math., Volume 41 (1995), pp. 153-165 | Article | Zbl 0837.17014
[16] Some remarks on Dirac structures and Poisson reductions, Banach Center Publ., Volume 51 (2000), pp. 165-173 | Zbl 0966.58013
[17] Manin triples for Lie bialgebroids, J. Diff. Geom., Volume 45 (1997), pp. 547-574 | Zbl 0885.58030
[18] Dirac structures and Poisson homogeneous spaces, Comm. Math. Phys., Volume 192 (1998), pp. 121-144 | Article | Zbl 0921.58074
[19] Exact Lie bialgebroids and Poisson groupoids, Geom. Funct. Anal., Volume 6 (1996), pp. 138-145 | Article | Zbl 0869.17016
[20] Classical dynamical -matrices and homogeneous Poisson structures on and , Comm. Math. Phys., Volume 212 (2000), pp. 337-370 | Article | Zbl 1008.53064
[21] Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Diff. Geom., Volume 31 (1990), pp. 501-526 | Zbl 0673.58018
[22] Lie bialgebroids and Poisson groupoids, Duke Math. J., Volume 18 (1994), pp. 415-452 | Article | Zbl 0844.22005
[23] Integration of Lie bialgebroids, Topology, Volume 39 (2000), pp. 445-467 | Article | Zbl 0961.58009
[24] Dressing transformations and Poisson Lie group actions, Volume 21 (1985), pp. 1237-1260 | Zbl 0674.58038
[25] On classification of dynamical -matrices, Math. Res. Lett., Volume 5 (1998), pp. 13-30 | Zbl 0957.17020
[26] Poisson geometry, Diff. Geom. Appl., Volume 9 (1998), pp. 213-238 | Article | Zbl 0930.37032
[27] Quantum groupoids associated to universal dynamical R-matrices, C. R. Acad. Sci. Paris, Série I, Volume 328 (1999), pp. 327-332 | Zbl 0939.17013
[28] Quantum groupoids, Comm. Math. Phys., Volume 216 (2001), pp. 539-581 | Article | Zbl 0986.17003
Cité par Sources :