On démontre que si est une variété fortement pseudoconvexe telle que soit de type fini et son ensemble exceptionnel de dimension 1, alors est plongeable dans si et seulement si est une variété kählérienne; en outre cette condition est vérifiée si et seulement si ne contient aucune courbe effective qui est homologue à zéro.
In this paper we show that a 1-convex (i.e., strongly pseudoconvex) manifold , with 1- dimensional exceptional set and finitely generated second homology group , is embeddable in if and only if is Kähler, and this case occurs only when does not contain any effective curve which is a boundary.
Classification : 32F10, 53B35
Mots clés : variétés 1-convexes, variétés kählériennes
@article{AIF_2001__51_1_99_0, author = {Alessandrini, Lucia and Bassanelli, Giovanni}, title = {On the embedding of 1-convex manifolds with 1-dimensional exceptional set}, journal = {Annales de l'Institut Fourier}, pages = {99--108}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {1}, year = {2001}, doi = {10.5802/aif.1817}, zbl = {0966.32008}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1817/} }
TY - JOUR AU - Alessandrini, Lucia AU - Bassanelli, Giovanni TI - On the embedding of 1-convex manifolds with 1-dimensional exceptional set JO - Annales de l'Institut Fourier PY - 2001 DA - 2001/// SP - 99 EP - 108 VL - 51 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1817/ UR - https://zbmath.org/?q=an%3A0966.32008 UR - https://doi.org/10.5802/aif.1817 DO - 10.5802/aif.1817 LA - en ID - AIF_2001__51_1_99_0 ER -
Alessandrini, Lucia; Bassanelli, Giovanni. On the embedding of 1-convex manifolds with 1-dimensional exceptional set. Annales de l'Institut Fourier, Tome 51 (2001) no. 1, pp. 99-108. doi : 10.5802/aif.1817. http://www.numdam.org/articles/10.5802/aif.1817/
[1] Metric properties of manifolds bimeromorphic to compact Kähler spaces, J. Differential Geom., Volume 37 (1993), pp. 95-121 | MR 1198601 | Zbl 0793.53068
[2] Sur les fibres infinitésimales d'un morphisme propre d'espaces complexes, Sém. F. Norguet, Fonctions de plusieurs variables complexes IV (Lect. Notes Math.), Volume 807 (1980) | Zbl 0445.32019
[3] A cut-off theorem for plurisubharmonic currents, Forum Math., Volume 6 (1994), pp. 567-595 | Article | MR 1295153 | Zbl 0808.32010
[4] On the embedding of 1-convex manifolds with 1-dimensional exceptional set, Comment. Math. Helv., Volume 60 (1985), pp. 458-465 | Article | MR 814151 | Zbl 0583.32047
[5] On 1-convex manifolds with 1-dimensional exceptional set (Collection of papers in memory of Martin Jurchescu), Rev. Roum. Math. Pures Appl., Volume 43 (1998), pp. 97-104 | MR 1655264 | Zbl 0932.32018
[6] On the Oka-Grauert principle for 1-convex manifolds, Math. Ann., Volume 310 (1998) no. 3, pp. 561-569 | Article | MR 1612254 | Zbl 0902.32011
[7] On Hulls of Meromorphy and a Class of Stein Manifolds, Ann. Scuola Norm. Sup., Volume XXVIII (1999), pp. 405-412 | Numdam | MR 1736523 | Zbl 0952.32008
[8] On strongly q-pseudoconvex spaces with positive vector bundles, Mem. Fac. Sci. Kyushu Univ. Ser. A, Volume 28 (1974), pp. 135-146 | Article | MR 364681 | Zbl 0297.32012
[9] An intrinsec characterization of Kähler manifolds, Invent. Math., Volume 74 (1983), pp. 169-198 | Article | MR 723213 | Zbl 0553.32008
[10] On the existence of special metrics in complex geometry, Acta Math., Volume 143 (1983), pp. 261-295 | MR 688351 | Zbl 0531.53053
[11] The Levi problem for complex spaces II, Math. Ann., Volume 146 (1962), pp. 195-216 | Article | MR 182747 | Zbl 0131.30801
[12] Topological Vector Spaces, Graduate Texts in Mathematics, 3, Springer, 1970 | Zbl 0217.16002
[13] Familien negativer Vektorbündel und 1-convexe Abbilungen, Abh. Math. Sem. Univ. Hamburg, Volume 47 (1978), pp. 150-170 | Article | MR 492393 | Zbl 0391.32011
[14] Embedding strongly -convex-concave spaces in , Several complex variables (Proc. Sympos. Pure Math.), Volume Vol. XXX, Part 2 (1977), pp. 41-44 | Zbl 0366.32006
[15] Embedding theorems and Kählerity for 1-convex spaces, Comment. Math. Helv., Volume 57 (1982), pp. 196-201 | Article | MR 684112 | Zbl 0555.32012
[16] On the Kählerian geometry of 1-convex threefolds, Forum Math., Volume 7 (1995), pp. 131-146 | Article | MR 1316945 | Zbl 0839.32003
Cité par Sources :