Let be a reductive Lie algebra and let be a Cartan subalgebra. A -module is called a weighted module if and only if , where each weight space is finite dimensional. The main result of the paper is the classification of all simple weight -modules. Further, we show that their characters can be deduced from characters of simple modules in category .
Soit une algèbre de Lie réductive et soit une sous-algèbre de Cartan. Un -module est dit module de poids si et seulement si il admet une décomposition , où chaque espace de poids est de dimension finie. Notre résultat principal est la classification de tous les -modules de poids simples. Également, leurs caractères sont déduits de formules des caractères des modules simples de la catégorie .
@article{AIF_2000__50_2_537_0,
author = {Mathieu, Olivier},
title = {Classification of irreducible weight modules},
journal = {Annales de l'Institut Fourier},
pages = {537--592},
year = {2000},
publisher = {Association des Annales de l'Institut Fourier},
volume = {50},
number = {2},
doi = {10.5802/aif.1765},
mrnumber = {2001h:17017},
zbl = {0962.17002},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1765/}
}
TY - JOUR AU - Mathieu, Olivier TI - Classification of irreducible weight modules JO - Annales de l'Institut Fourier PY - 2000 SP - 537 EP - 592 VL - 50 IS - 2 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1765/ DO - 10.5802/aif.1765 LA - en ID - AIF_2000__50_2_537_0 ER -
%0 Journal Article %A Mathieu, Olivier %T Classification of irreducible weight modules %J Annales de l'Institut Fourier %D 2000 %P 537-592 %V 50 %N 2 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1765/ %R 10.5802/aif.1765 %G en %F AIF_2000__50_2_537_0
Mathieu, Olivier. Classification of irreducible weight modules. Annales de l'Institut Fourier, Tome 50 (2000) no. 2, pp. 537-592. doi: 10.5802/aif.1765
[B1] , Groupes et algèbres de Lie, Ch 4-6, Herman, Paris, 1968.
[B2] , Groupes et algèbres de Lie, Ch 7-8, Herman, Paris, 1975.
[BLL] , and , Modules with bounded multiplicities for simple Lie algebras, Math. Z., 225 (1997), 333-353. | Zbl | MR
[BHL] , and , Simple Cn-modules with multiplicities 1 and applications, Canad. J. Phys., 72 (1994), 326-335. | Zbl | MR
[BFL] , and , Simple A2-modules with a finite-dimensional weight space, Comm. Algebra, 23 (1995), 467-510. | Zbl | MR
[BL1] and , A classification of simple Lie modules having a 1-dimensional weight space, Trans. Amer. Math. Soc., 299 (1987), 683-697. | Zbl | MR
[BL2] and , On Modules of Bounded Multiplicities For The Symplectic Algebras, Trans. amer. math. Soc., 351 (1999), 3413-3431. | Zbl | MR
[BL3] and , The torsion free Pieri formula, Canad. J. Math., 50 (1998), 266-289. | Zbl | MR
[CFO] , and , On the support of irreducible non-dense modules for finite-dimensional Lie algebras, Preprint.
[DMP] , and , On the structure of weight modules, to appear in Trans. Amer. Math. Soc. | Zbl
[D] , Algèbres enveloppantes, Gauthier-Villars, Paris, 1974. | Zbl | MR
[Fe] , Lie algebra modules with finite dimensional weight spaces, I, TAMS, 322 (1990), 757-781. | Zbl | MR
[Fu] , The weight representations of semisimple finite dimensional Lie algebras, Ph. D. Thesis, Kiev University, 1987.
[GJ] , , Towards the Kazhdan-Lusztig conjecture, Ann. Sci. E.N.S., 14 (1981), 261-302. | Zbl | MR | Numdam
[Gab] , Exposé au Séminaire Godement, Paris (1959-1960), unpublished.
[Gai] , Formes différentielles sur l'espace projectif réel sous l'action du groupe linéaire général, Comment. Math. Helv., 70 (1995), 375-382. | Zbl | MR
[Ja] , Moduln mit einem hochsten Gewicht, Lect. Notes Math. 750 (1979). | Zbl | MR
[Jo1] , Topics in Lie algebras, unpublished notes (1995).
[Jo2] , The primitive spectrum of an enveloping algebra, Astérisque, 173-174 (1989), 13-53. | Zbl | MR | Numdam
[Jo3] , Some ring theoretic techniques and open problems in enveloping algebras, in Non-commutative Rings, ed. S. Montgomery and L. Small, Birkhäuser (1992), 27-67. | Zbl | MR
[K] , Lie algebra cohomology and the generalized Borel-Weil-Bott theorem, Ann. of Math., 74 (1961), 329-387. | Zbl | MR
[Mi] , On Lie algebras and some special functions of mathematical physics, Mem. A.M.S., 50 (1964). | Zbl | MR
[S] , Kategorie O, perverse Garben und Moduln uber den Koinvarianten zur Weylgruppe, J. A.M.S., 3 (1990), 421-445. | Zbl
Cité par Sources :






