Leibniz cohomology for differentiable manifolds
Annales de l'Institut Fourier, Volume 48 (1998) no. 1, p. 73-95

We propose a definition of Leibniz cohomology, HL * , for differentiable manifolds. Then HL * becomes a non-commutative version of Gelfand-Fuks cohomology. The calculations of HL * (R n ;R) reduce to those of formal vector fields, and can be identified with certain invariants of foliations.

On propose une définition de la cohomologie de Leibniz, HL * , pour les variétés différentiables. Alors HL * devient une version non-commutative de la cohomologie de Gelfand-Fuks. Les calculs de HL * (R n ;R) se réduisent à ceux des champs de vecteurs formels, et peuvent être identifiés avec des invariants de feuilletages.

@article{AIF_1998__48_1_73_0,
     author = {Lodder, Jerry M.},
     title = {Leibniz cohomology for differentiable manifolds},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {48},
     number = {1},
     year = {1998},
     pages = {73-95},
     doi = {10.5802/aif.1611},
     zbl = {0912.17001},
     mrnumber = {99b:17003},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1998__48_1_73_0}
}
Leibniz cohomology for differentiable manifolds. Annales de l'Institut Fourier, Volume 48 (1998) no. 1, pp. 73-95. doi : 10.5802/aif.1611. http://www.numdam.org/item/AIF_1998__48_1_73_0/

[B] R. Bott, Lectures on Characteristic Classes and Foliations, Lecture Notes in Mathematics, 279 (1972), 1-94. | MR 50 #14777 | Zbl 0241.57010

[BS] R. Bott, G. Segal, The Cohomology of the Vector Fields on a Manifold, Topology, 16 (1977), 285-298. | MR 58 #31102 | Zbl 0387.57012

[CE] C. Chevalley, S. Eilenberg, Cohomology Theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85-124. | MR 9,567a | Zbl 0031.24803

[C] A. Connes, Géométrie Non Commutative, Inter Editions, Paris, 1990. | Zbl 0745.46067

[F] D.B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, 1986 (A.B. Sosinskii translator). | MR 88b:17001 | Zbl 0667.17005

[GK] V. Ginzburg, M.M. Kapranov, Koszul Duality for Operads, Duke Jour. Math., 76-1 (1994), 203-272. | MR 96a:18004 | Zbl 0855.18006

[Gb] C. Godbillon, Cohomologies d'algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki, 421 (1972). | Numdam | Zbl 0296.17010

[Gw] T.G. Goodwillie, Relative Algebraic K-Theory and Cyclic Homology, Annals of Math., 124 (1986), 347-402. | MR 88b:18008 | Zbl 0627.18004

[H] A. Haefliger, Sur les classes caractéristiques des feuilletages, Séminaire Bourbaki, 412 (1972). | Numdam | Zbl 0257.57011

[HS] G. Hochschild J.-P. Serre, Cohomology of Lie Algebras, Ann. of Math., 57 (1953), 591-603. | MR 14,943c | Zbl 0053.01402

[K] V. Kač, Vertex Algebras for Beginners, Am. Math. Soc., Univ. Lecture Series, 10 (1996). | Zbl 0861.17017

[K-S] Y. Kosmann-Schwarzbach, From Poisson Algebras to Gerstenhaber Algebra, Ann. Inst. Fourier, Grenoble, 46-5 (1996), 1243-1274. | Numdam | MR 98b:17032 | Zbl 0858.17027

[L1] J.-L. Loday, Cyclic Homology, Grund. Math. Wissen. 301, Springer Verlag, 1992. | MR 94a:19004 | Zbl 0780.18009

[L2] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, L'Enseignement Math., 39 (1993), 269-293. | MR 95a:19004 | Zbl 0806.55009

[L3] J.-L. Loday, Cup product for Leibniz cohomology and dual Leibniz algebras, Math. Scand., 77-2 (1995), 189-196. | MR 96m:17001 | Zbl 0859.17015

[L4] J.-L. Loday, La Renaissance des Opérades, Séminaire Bourbaki, 792 (1994-1995). | Numdam | Zbl 0866.18007

[LP] J.-L. Loday, T. Pirashvili, Universal Enveloping Algebras of Leibniz Algebras and (Co)-homology, Math. Annalen, 296 (1993), 139-158. | MR 94j:17003 | Zbl 0821.17022

[P] T. Pirashvili, On Leibniz Homology, Ann. Inst. Fourier, Grenoble, 44-2 (1994), 401-411. | Numdam | MR 96f:17030 | Zbl 0821.17023

[S] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. I, Publish or Perish, Inc. (1979). | Zbl 0439.53001

[W] H. Weyl, The Classical Groups, Princeton University Press, 1946.