We propose a definition of Leibniz cohomology, , for differentiable manifolds. Then becomes a non-commutative version of Gelfand-Fuks cohomology. The calculations of reduce to those of formal vector fields, and can be identified with certain invariants of foliations.
On propose une définition de la cohomologie de Leibniz, , pour les variétés différentiables. Alors devient une version non-commutative de la cohomologie de Gelfand-Fuks. Les calculs de se réduisent à ceux des champs de vecteurs formels, et peuvent être identifiés avec des invariants de feuilletages.
@article{AIF_1998__48_1_73_0,
author = {Lodder, Jerry M.},
title = {Leibniz cohomology for differentiable manifolds},
journal = {Annales de l'Institut Fourier},
pages = {73--95},
year = {1998},
publisher = {Association des Annales de l'Institut Fourier},
volume = {48},
number = {1},
doi = {10.5802/aif.1611},
mrnumber = {99b:17003},
zbl = {0912.17001},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1611/}
}
TY - JOUR AU - Lodder, Jerry M. TI - Leibniz cohomology for differentiable manifolds JO - Annales de l'Institut Fourier PY - 1998 SP - 73 EP - 95 VL - 48 IS - 1 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1611/ DO - 10.5802/aif.1611 LA - en ID - AIF_1998__48_1_73_0 ER -
%0 Journal Article %A Lodder, Jerry M. %T Leibniz cohomology for differentiable manifolds %J Annales de l'Institut Fourier %D 1998 %P 73-95 %V 48 %N 1 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1611/ %R 10.5802/aif.1611 %G en %F AIF_1998__48_1_73_0
Lodder, Jerry M. Leibniz cohomology for differentiable manifolds. Annales de l'Institut Fourier, Tome 48 (1998) no. 1, pp. 73-95. doi: 10.5802/aif.1611
[B] , Lectures on Characteristic Classes and Foliations, Lecture Notes in Mathematics, 279 (1972), 1-94. | Zbl | MR
[BS] , , The Cohomology of the Vector Fields on a Manifold, Topology, 16 (1977), 285-298. | Zbl | MR
[CE] , , Cohomology Theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85-124. | Zbl | MR
[C] , Géométrie Non Commutative, Inter Editions, Paris, 1990. | Zbl
[F] , Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, 1986 (A.B. Sosinskii translator). | Zbl | MR
[GK] , , Koszul Duality for Operads, Duke Jour. Math., 76-1 (1994), 203-272. | Zbl | MR
[Gb] , Cohomologies d'algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki, 421 (1972). | Zbl | Numdam
[Gw] , Relative Algebraic K-Theory and Cyclic Homology, Annals of Math., 124 (1986), 347-402. | Zbl | MR
[H] , Sur les classes caractéristiques des feuilletages, Séminaire Bourbaki, 412 (1972). | Zbl | Numdam
[HS] , Cohomology of Lie Algebras, Ann. of Math., 57 (1953), 591-603. | Zbl | MR
[K] , Vertex Algebras for Beginners, Am. Math. Soc., Univ. Lecture Series, 10 (1996). | Zbl
[K-S] , From Poisson Algebras to Gerstenhaber Algebra, Ann. Inst. Fourier, Grenoble, 46-5 (1996), 1243-1274. | Zbl | MR | Numdam
[L1] , Cyclic Homology, Grund. Math. Wissen. 301, Springer Verlag, 1992. | Zbl | MR
[L2] , Une version non commutative des algèbres de Lie: les algèbres de Leibniz, L'Enseignement Math., 39 (1993), 269-293. | Zbl | MR
[L3] , Cup product for Leibniz cohomology and dual Leibniz algebras, Math. Scand., 77-2 (1995), 189-196. | Zbl | MR
[L4] , La Renaissance des Opérades, Séminaire Bourbaki, 792 (1994-1995). | Zbl | Numdam
[LP] , , Universal Enveloping Algebras of Leibniz Algebras and (Co)-homology, Math. Annalen, 296 (1993), 139-158. | Zbl | MR
[P] , On Leibniz Homology, Ann. Inst. Fourier, Grenoble, 44-2 (1994), 401-411. | Zbl | MR | Numdam
[S] , A Comprehensive Introduction to Differential Geometry, Vol. I, Publish or Perish, Inc. (1979). | Zbl
[W] , The Classical Groups, Princeton University Press, 1946.
Cité par Sources :





