Sharp L p -L q estimates for a class of averaging operators
Annales de l'Institut Fourier, Volume 46 (1996) no. 5, p. 1359-1384

Sharp L p -L q estimates are obtained for averaging operators associated to hypersurfaces in R n given as graphs of homogeneous functions. An application to the regularity of an initial value problem is given.

On obtient des estimations L p -L q pour des opérateurs maximaux associés à des hypersurfaces de R n qui sont des graphes de fonctions homogènes. On en déduit un théorème de régularité pour les solutions d’une certaine équation aux dérivées partielles linéaire.

@article{AIF_1996__46_5_1359_0,
     author = {Iosevich, Alex and Sawyer, Eric},
     title = {Sharp $L^p-L^q$ estimates for a class of averaging operators},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {46},
     number = {5},
     year = {1996},
     pages = {1359-1384},
     doi = {10.5802/aif.1553},
     zbl = {0898.42003},
     mrnumber = {98a:42008},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1996__46_5_1359_0}
}
Iosevich, Alex; Sawyer, Eric. Sharp $L^p-L^q$ estimates for a class of averaging operators. Annales de l'Institut Fourier, Volume 46 (1996) no. 5, pp. 1359-1384. doi : 10.5802/aif.1553. http://www.numdam.org/item/AIF_1996__46_5_1359_0/

[Io1] A. Iosevich, Maximal operators associated to families of flat curves in the plane, Duke Math. J., 76 (1994), 633-644. | MR 95k:42028 | Zbl 0827.42010

[Io2] A. Iosevich, Averages over homogeneous hypersurfaces in R3, to appear in Forum Mathematicum, January (1996). | MR 97m:42015 | Zbl 0862.42012

[IoSa] A. Iosevich and E. Sawyer, Oscillatory integrals and maximal averages over homogeneous surfaces, Duke Math. J., 82 (1996), 1-39. | MR 97f:42035 | Zbl 0898.42004

[KPV] C. Kenig, G. Ponce, and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Math. J., 40 (1991), 33-69. | MR 92d:35081 | Zbl 0738.35022

[Litt] W. Littman, Lp — Lq estimates for singular integral operators, Proc. Symp. Pure Math., 23 (1973), 479-481. | MR 50 #10909 | Zbl 0263.44006

[RiSt] F. Ricci and E.M. Stein, Harmonic analysis on nilpotent groups and singular integrals III, Jour. Funct. Anal., 86 (1989), 360-389. | MR 90m:22027 | Zbl 0684.22006

[So] C.D. Sogge, Fourier integrals in classical analysis, Cambridge Univ. Press, 1993. | MR 94c:35178 | Zbl 0783.35001

[St1] E.M. Stein, Lp boundedness of certain convolution operators, Bull. Amer. Math. Soc., 77 (1971), 404-405. | MR 43 #2497 | Zbl 0217.44503

[St2] E.M. Stein, Harmonic Analysis, Princeton University Press, 1993. | Zbl 0821.42001

[Str] R. Strichartz, Convolutions with kernels having singularities on the sphere, Trans. Amer. Math. Soc., 148 (1970), 461-471. | MR 41 #876 | Zbl 0199.17502