Franchi, Bruno; Lu, Guozhen; Wheeden, Richard L.
Representation formulas and weighted Poincaré inequalities for Hörmander vector fields
Annales de l'institut Fourier, Tome 45 (1995) no. 2 , p. 577-604
Zbl 0820.46026 | MR 96i:46037 | 2 citations dans Numdam
doi : 10.5802/aif.1466
URL stable : http://www.numdam.org/item?id=AIF_1995__45_2_577_0

Dans cet article nous prouvons des inégalités de Poincaré associées à une famille de champs de vecteurs satisfaisant l’hypothèse de Hörmander et qui sont aussi nouvelles dans le cas sans poids. Nous obtenons une nouvelle formule de représentation pour une fonction en termes des champs de vecteurs appliqués à la fonction. En particulier, on en déduit une inégalité isopérimétrique relative.
We derive weighted Poincaré inequalities for vector fields which satisfy the Hörmander condition, including new results in the unweighted case. We also derive a new integral representation formula for a function in terms of the vector fields applied to the function. As a corollary of the L 1 versions of Poincaré’s inequality, we obtain relative isoperimetric inequalities.

Bibliographie

[BKL] S. Buckley, P. Koskela and G. Lu, Boman aka John, in preparation.

[BM1] M. Biroli and U. Mosco, Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., to appear. Zbl 0837.31006

[BM2] M. Biroli and U. Mosco, Proceedings of the Conference “Potential theory and partial differential operators with nonnegative characteristic form”, Parma, February 1994, Kluwer, Amsterdam, to appear.

[Bo] B. Bojarski, Remarks on Sobolev imbedding inequalities, Lecture Notes in Math. 1351 (1989), 52-68, Springer-Verlag. MR 90b:46068 | Zbl 0662.46037

[Bu] H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955. MR 17,779a | Zbl 0112.37002

[Ca] A.P. Calderón, Inequalities for the maximal function relative to a metric, Studia Math., 57 (1976), 297-306. MR 56 #960 | Zbl 0341.44007

[CDG] L. Capogna, D. Danielli, N. Garofalo, Subelliptic mollifiers and a characterization of Rellich and Poincaré domains, Rend. Sem. Mat. Univ. Politec. Torino, 51 (1993), 361-386. MR 96b:35030 | Zbl 0811.35017

[Ch] S.-K. Chua, Weighted Sobolev's inequality on domains satisfying the Boman chain condition, Proc. Amer. Math. Soc., to appear. Zbl 0812.46020

[Cou] T. Coulhon, Espaces de Lipschitz et inegalités de Poincaré, J. Funct. Anal., to appear. Zbl 0859.58009

[CW] S. Chanillo and R.L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for the Peano maximal function, Amer. J. Math., 107 (1985), 1191-1226. MR 87f:42045 | Zbl 0575.42026

[Fe] H. Federer, Geometric Measure Theory, Springer, 1969. MR 41 #1976 | Zbl 0176.00801

[FP] C. Fefferman and D.H. Phong, Subelliptic eigenvalue estimates, Conference on Harmonic Analysis, Chicago, 1980, W. Beckner et al. ed., Wadsworth (1981), 590-606. Zbl 0503.35071

[F] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic operators, Trans. Amer. Math. Soc., 327 (1991), 125-158. MR 91m:35095 | Zbl 0751.46023

[FGaW1] B. Franchi, S. Gallot and R.L. Wheeden, Inégalités isoperimétriques pour des métriques dégénérées, C.R. Acad. Sci. Paris, Sér. I, Math., 317 (1993), 651-654. MR 95e:46039 | Zbl 0794.51011

[FGaW2] B. Franchi, S. Gallot and R.L. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann., 300 (1994), 557-571. MR 96a:46066 | Zbl 0830.46027

[FGuW] B. Franchi, C.E. Gutierrez and R.L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. P.D.E., 19 (1994), 523-604. MR 96h:26019 | Zbl 0822.46032

[FL] B. Franchi and E. Lanconelli, Hölder regularity for a class of linear non uniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa, (IV) 10 (1983), 523-541. Numdam | MR 85k:35094 | Zbl 0552.35032

[FLW] B. Franchi, G. Lu and R.L. Wheeden, Weighted Poincaré inequalities for Hörmander vector fields and local regularity for a class of degenerate elliptic equations, Proceedings of the Conference “Potential theory and partial differential operators with nonnegative characteristic form”, Parma, February 1994, Kluwer, Amsterdam, to appear.

[FS] B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators, Ann. Scuola Norm. Sup. Pisa, (IV) 14 (1987), 527-568. Numdam | MR 90e:35076 | Zbl 0685.35046

[G] M. Gromov, Structures Métriques pour les Variétés Riemanniennes (rédigé par J. Lafontaine et P. Pansu), CEDIC Ed., Paris, 1981. MR 85e:53051 | Zbl 0509.53034

[GGK] I. Genebashvili, A. Gogatishvili and V. Kokilashvili, Criteria of general weak type inequalities for integral transforms with positive kernels, Proc. Georgian Acad. Sci. Math., 1 (1993), 11-34. MR 94j:42030 | Zbl 0803.42011

[H] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. MR 36 #5526 | Zbl 0156.10701

[IN] T. Iwaniec and C.A. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in ℝn, Ann. Acad. Sci. Fenn. Series A.I. Math., 10 (1985), 267-282. MR 87d:30022 | Zbl 0588.30023

[J] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J., 53 (1986), 503-523. MR 87i:35027 | Zbl 0614.35066

[L1] G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Revista Mat. Iberoamericana, 8 (1992), 367-439. MR 94c:35061 | Zbl 0804.35015

[L2] G. Lu, The sharp Poincaré inequality for free vector fields: An endpoint result, Preprint 1992, Revista Mat. Iberoamericana, 10 (2) (1994), 453-466. MR 96g:26023 | Zbl 0860.35006

[L3] G. Lu, Embedding theorems on Campanato-Morrey spaces for vector fields of Hörmander type and applications to subelliptic PDE, C.R. Acad. Sci. Paris, to appear. Zbl 0916.46026

[L4] G. Lu, Embedding theorems into the Orlicz and Lipschitz spaces and applications to quasilinear subelliptic differential equations, Preprint, February, 1994.

[L5] G. Lu, A note on Poincaré type inequality for solutions to subelliptic equations, Comm. Partial Differential Equations, to appear. Zbl 0847.35044

[LW] G. Lu and R.L. Wheeden, (ε, δ) domains, Poincaré domains and extension theorems on weighted Sobolev spaces for degenerate vector fields, in preparation.

[MS-Cos] P. Maheux and L. Saloff-Coste, Analyse sur les boules d'un opérateur sous-elliptique, preprint (1994). Zbl 0836.35106

[NSW] A. Nagel, E.M. Stein and S. Wainger, Balls and metrics defined by vector fields I : basic properties, Acta Math., 155 (1985), 103-147. MR 86k:46049 | Zbl 0578.32044

[RS] L.P. Rothschild and E.M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320. MR 55 #9171 | Zbl 0346.35030

[S-Cal] A. Sánchez-Calle, Fundamental solutions and geometry of the sums of squares of vector fields, Invent. Math., 78 (1984), 143-160. MR 86e:58078 | Zbl 0582.58004

[S-Cos] L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Research Notices (Duke Math. J.), 65(2) (1992), 27-38. Zbl 0769.58054

[SW] E.T. Sawyer and R.L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math., 114 (1992), 813-874. MR 94i:42024 | Zbl 0783.42011

[W] R.L. Wheeden, A characterization of some weighted norm inequalities for the fractional maximal function, Studia Math., 107 (1993), 257-272. MR 94m:42044 | Zbl 0809.42009