Zhang, Genkai
The asymptotics of spherical functions and the central limit theorem on symmetric cones
Annales de l'institut Fourier, Tome 45 (1995) no. 2 , p. 565-575
Zbl 0820.43008 | MR 96k:43015
doi : 10.5802/aif.1465
URL stable : http://www.numdam.org/item?id=AIF_1995__45_2_565_0

On démontre un théorème central limite pour certaines variables aléatoires sur le cône symétrique d’une algèbre de Jordan formellement réelle. Le résultat prolonge des résultats de Richards et Terras sur le cône des matrices réelles définies positives n×n.
We prove a central limit theorem for certain invariant random variables on the symmetric cone in a formally real Jordan algebra. This extends form the previous results of Richards and Terras on the cone of real positive definite n×n matrices.


[A] J. Arazy, Personal communication.

[BK] H. Braun and M. Koecher, Jordan-Algebren, Springer, Berlin, Heidelberg, New York, 1966. MR 34 #4310 | Zbl 0145.26001

[FK] J. Faraut and A. Koranyi, Function spaces and reproducing kernels on bounded symmetric domains, J. Func. Anal., 89 (1990), 64-89. MR 90m:32049 | Zbl 0718.32026

[G1] P. Graczyk, A central limit theorem on the space of positive definite symmetric matrices, Ann. Inst. Fourier, 42-1,2 (1992), 857-874. Numdam | MR 93m:60023 | Zbl 0736.60025

[G2] P. Graczyk, Dispersions and a central limit theorem, preprint. Zbl 0829.43002

[H1] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, London, 1978. Zbl 0451.53038

[H2] S. Helgason, Groups and geometric analysis, Academic Press, London, 1984. Zbl 0543.58001

[KS] B. Kostant and S. Sahi, The Capelli Identity, Tube Domains, and the Generalized Laplace Transform, Adv. Math., 87 (1991), 71-92. Zbl 0748.22008

[Ku] H. B. Kushner, The linearization of the product of two zonal polynomials, SIAM J. Math. Anal., 19 (1988), 686-717. MR 89e:33026 | Zbl 0642.33024

[L] O. Loos, Bounded Symmetric Domains and Jordan Pairs, University of California, Irvine, 1977. Zbl 0228.32012

[M] R. J. Murihead, Aspects of multivariate statistical theory, John Wiley & Sons, New-York, 1982. Zbl 0556.62028

[R] D. St. P. Richards, The central limit theorem on spaces of positive definite matrices, J. Multivariate Anal., 23 (1987), 13-36.

[St] R. P. Stanley, Some Combinatorial Properties of Jack Symmetric Functions, Adv. Math., 77 (1989), 76-115. MR 90g:05020 | Zbl 0743.05072

[T1] A. Terras, Harmonic analysis on symmetric spaces and applications, II, Springer-Verlag, New-York, 1985. MR 87f:22010 | Zbl 0574.10029

[T2] A. Terras, Asymptotics of special functions and the central limit theorem on the space Pn of positive n x n matrices, J. Multivariate Anal., 23 (1987) 13-36. MR 88j:43006 | Zbl 0627.43009

[UU] A. Unterberger and H. Upmeier, Berezin transform and invariant differential operators, preprint. Zbl 0843.32019

[U1] H. Upmeier, Jordan algebras in analysis, operator theory, and quantum mechanics, Regional conference series in mathematics, n° 67, Amer. Math. Soc., 1987. Zbl 0608.17013

[U2] H. Upmeier, Toeplitz operators on bounded symmetric domains, Tran. Amer. Math. Soc., 280 (1983), 221-237. MR 85g:47042 | Zbl 0527.47019

[Vr] L. Vretare, Elementary spherical functions on symmetric spaces, Math. Scand., 39 (1976), 343-358. MR 56 #6289 | Zbl 0387.43009

[Z] G. Zhang, Some recurrence formula for spherical polynomials on tube domains, Trans. Amer. Math. Soc., to appear. Zbl 0839.22019