Tan, Ki-Seng
Refined theorems of the Birch and Swinnerton-Dyer type
Annales de l'institut Fourier, Tome 45 (1995) no. 2 , p. 317-374
Zbl 0821.11036 | MR 96j:11089
doi : 10.5802/aif.1457
URL stable : http://www.numdam.org/item?id=AIF_1995__45_2_317_0

Dans cet article nous généralisons le contexte de la conjecture de Mazur-Tate et dans une certaine mesure en donnons un énoncé plus fin. Nous prouvons ces nouvelles conjectures en supposant vraies les conjectures classiques de Birch et Swinnerton-Dyer. Ceci est remarquable dans le cas du corps des fonctions où ces résultats constituent une amélioration de travaux antérieurs de Tate et Milne.
In this paper, we generalize the context of the Mazur-Tate conjecture and sharpen, in a certain way, the statement of the conjecture. Our main result will be to establish the truth of a part of these new sharpened conjectures, provided that one assume the truth of the classical Birch and Swinnerton-Dyer conjectures. This is particularly striking in the function field case, where these results can be viewed as being a refinement of the earlier work of Tate and Milne.

Bibliographie

[AT] E. Artin and J. Tate, Class Field Theory, Benjamin, New York, 1967. Zbl 0176.33504

[BS] Z. Borevich and I.R. Shafarevich, Number Theorey, English translation, Academic Press, New York, 1966. Zbl 0145.04902

[D] P. Deligne, Les constants, etc., Séminaire Delange-Poisot-Poitou, 11e année 19, 1970. Numdam | Zbl 0215.08301

[G] B. Gross, On the value of abelian L-functions at s = 0, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 35 (1988), 177-197. MR 89h:11071 | Zbl 0681.12005

[GSt] R. Greenberg and G. Stevens, p-adic L-functions and p-adic modular forms, Invent. Math., 111 (1993), 407-447. MR 93m:11054 | Zbl 0778.11034

[K] H. Kisilevsky, Multiplicative independence in function fields, J. Number Theory, 44 (1993), 352-355. MR 94k:11125 | Zbl 0780.11058

[L] S. Lang, Algebraic Number Theory, Graduate Texts in Mathematics, Vol. 110, Springer-Verlag, New York, 1986. MR 95f:11085 | Zbl 0601.12001

[M] B. Mazur, Letter to J. Tate, 1987.

[Ml1] J. Milne, On a conjecture of Artin and Tate, Annals of Math., 102 (1975), 517-533. MR 54 #2659 | Zbl 0343.14005

[Ml2] J. Milne, Arithmetic Duality Theorems, Academic Press, New York, 1986. MR 88e:14028 | Zbl 0613.14019

[Mu] D. Mumford, Biextensions of formal groups, in the Proceedings of the Bombay Colloquium on Algebraic Geometry, Tata Institute of Fundamental Research Studies in Mathematics 4, London, Oxford University Press, 1968.

[MT1] B. Mazur and J. Tate, Canonical pairing via biextensions, in Arithmetic and Geometry, Progr. Math., Vol. 35 (1983), 195-237, Birkhäuser, Boston-Basel-Stuttgart. MR 85j:14081 | Zbl 0574.14036

[MT2] B. Mazur and J. Tate, Refined conjectures of the Birch and Swinnerton-Dyer type, Duke Math. J., 54/2 (1987), 711-750. MR 88k:11039 | Zbl 0636.14004

[MTT] B. Mazur, J. Tate and J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., 84 (1986), 1-84. MR 87e:11076 | Zbl 0699.14028

[PV] I.B.S. Passi and L.R. Vermani, The associated graded ring of an integral group ring, Math. Proc. Camb. Phil. Soc., 82 (1977), 25-33. MR 55 #10550 | Zbl 0358.16006

[S] J. Silverman, Arithmetic of Elliptic Curves, Graduate Texts in Math., Vol. 106, Springer-Verlag, New York, 1986. MR 87g:11070 | Zbl 0585.14026

[GA7 I] A. Grothendieck et al., Séminaire de géométrie algébrique du Bois Marie, 1967/1969, Groupes de monodromie en géométrie algébrique, Lecture Notes in mathematics 288, Springer, Berlin-Heidelberg-New York, 1972. Zbl 0237.00013

[T1] J. Tate, Duality theorems in Galois cohomology over number fields, in Proc. Intern. Congress Math., Stockholm (1962), 231-241. Zbl 0126.07002

[T2] J. Tate, On the conjecture of Birch and Swinnerton-Dyer and a geometric analogue, Séminaire Bourbaki n° 306 (1966). Numdam | Zbl 0199.55604

[T3] J. Tate, The arithmetic of elliptic curves, Invent. Math., 23 (1974), 179-206. MR 54 #7380 | Zbl 0296.14018

[T4] J. Tate, Letter to B. Mazur, 1988.

[T5] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular Functions of One Variable IV, Lecture Notes in Math. 476 (1975), p. 33-53, Springer-Verlag, Berlin-Heidelberg-New York.

[Tn1] K.-S. Tan, Refined conjectures of the Birch and Swinnerton-Dyer Type, Harvard University, Dept. of Mathematics, Ph. D. Thesis, 1990.

[Tn2] K.-S. Tan, Modular elements over function fields, Journal of Number Theory, 45 (1993, n° 3), 295-311. MR 95d:11158 | Zbl 0802.11026

[Tn3] K.-S. Tan, On the p-adic height pairings, AMS Proceedings on the p-adic Monodromy, to appear.

[Tn4] K.-S. Tan, On the special values of abelian L-function, submitted to J. Fac. Sci. Univ. Tokyo. Zbl 0820.11069

[W1] A. Weil, Basic Number Theory, Grundl. Math. Wiss. Bd. 144, Springer-Verlag, New York, 1967. Zbl 0176.33601

[W2] A. Weil, Adèles and Algebraic Groups, Birkhauser, Boston, 1982.

[Z] J.G. Zarhin, Néron pairing and quasicharacters, Izv. Akad. Nauk. SSSR Ser. Mat. 36 (3), 497-509, 1972. (Math. USSR Izvestija, Vol. 6, No. 3, 491-503). Zbl 0254.14012