Let be a -action on an orientable -dimensional manifold. Assume has an isolated compact orbit and let be a small tubular neighborhood of it. By a change of variables, we can write and , where is some interval containing 0.
In this work, we show that by a change of variables, outside , we can make invariant by transformations of the type , where and . As a corollary one cas describe completely the dynamics of in .
Soit une -action sur une variété orientable de dimension . Supposons que possède une orbite compacte isolée et soit un petit voisinage tubulaire de . À l’aide d’un changement de variables , nous pouvons écrire et , où est un intervalle réel contenant 0.
Dans ce travail nous montrons que par un changement de variables , qui est au-dehors de , nous pouvons rendre invariante par les transformations du type , où et . Comme corollaire nous pouvons décrire complètement la dynamique de sur .
@article{AIF_1994__44_5_1435_0,
author = {Craizer, Marcos},
title = {Homogenization of codimension 1 actions of ${\mathbb {R}}^n$ near a compact orbit},
journal = {Annales de l'Institut Fourier},
pages = {1435--1448},
year = {1994},
publisher = {Association des Annales de l'Institut Fourier},
volume = {44},
number = {5},
doi = {10.5802/aif.1440},
mrnumber = {95m:58100},
zbl = {0820.34021},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1440/}
}
TY - JOUR
AU - Craizer, Marcos
TI - Homogenization of codimension 1 actions of ${\mathbb {R}}^n$ near a compact orbit
JO - Annales de l'Institut Fourier
PY - 1994
SP - 1435
EP - 1448
VL - 44
IS - 5
PB - Association des Annales de l'Institut Fourier
UR - https://www.numdam.org/articles/10.5802/aif.1440/
DO - 10.5802/aif.1440
LA - en
ID - AIF_1994__44_5_1435_0
ER -
%0 Journal Article
%A Craizer, Marcos
%T Homogenization of codimension 1 actions of ${\mathbb {R}}^n$ near a compact orbit
%J Annales de l'Institut Fourier
%D 1994
%P 1435-1448
%V 44
%N 5
%I Association des Annales de l'Institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1440/
%R 10.5802/aif.1440
%G en
%F AIF_1994__44_5_1435_0
Craizer, Marcos. Homogenization of codimension 1 actions of ${\mathbb {R}}^n$ near a compact orbit. Annales de l'Institut Fourier, Tome 44 (1994) no. 5, pp. 1435-1448. doi: 10.5802/aif.1440
[1] and , A characterization of 2-dimensional foliations of rank 2 on compact orientable 3-manifolds, preprint.
[2] , and , A classification of the topological types of ℝ2-actions on closed orientable 3-manifolds, Publ. Math. IHES, 43 (1973), 261-272. | Zbl | MR | Numdam
[3] , Commuting diffeomorphisms. Global Analysis, Proc. of Symp. in Pure Math., AMS, XIV (1970). | Zbl
[4] , Ergodic theory and differentiable dynamics, Springer-Verlag, 1987. | Zbl | MR
[5] , Feuilletages et difféomorphismes infiniment tangents à l'identité, Inv. Math., 39 (1977), 253-275. | Zbl | MR
[6] , Regular iteration of real and complex functions, Acta Math., 100 (1958), 163-195. | Zbl | MR
Cité par Sources :





