We define on an ordered semi simple symmetric space a family of spherical functions by an integral formula similar to the Harish-Chandra integral formula for spherical functions on a Riemannian symmetric space of non compact type. Associated with these spherical functions we define a spherical Laplace transform. This transform carries the composition product of invariant causal kernels onto the ordinary product. We invert this transform when is a complex group, a real form of , and when is a symmetric space of rank one.
Sur un espace symétrique semi simple ordonné nous définissons une famille de fonctions sphériques par une représentation intégrale semblable à la représentation intégrale de Harish Chandra des fonctions sphériques sur un espace riemannien symétrique de type non compact. Puis nous associons à ces fonctions sphériques une transformation de Laplace sphérique. Dans cette transformation le produit de composition de deux noyaux causaux invariants a pour image le produit ordinaire de leurs transformées. Nous établissons une formule d’inversion pour cette transformation lorsque est un groupe complexe et une forme réelle de , et lorsque est un espace symétrique de rang un.
@article{AIF_1994__44_3_927_0,
author = {Faraut, Jacques and Hilgert, Joachim and \'Olafsson, Gestur},
title = {Spherical functions on ordered symmetric spaces},
journal = {Annales de l'Institut Fourier},
pages = {927--965},
year = {1994},
publisher = {Association des Annales de l'Institut Fourier},
volume = {44},
number = {3},
doi = {10.5802/aif.1421},
mrnumber = {96a:43012},
zbl = {0810.43003},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1421/}
}
TY - JOUR AU - Faraut, Jacques AU - Hilgert, Joachim AU - Ólafsson, Gestur TI - Spherical functions on ordered symmetric spaces JO - Annales de l'Institut Fourier PY - 1994 SP - 927 EP - 965 VL - 44 IS - 3 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1421/ DO - 10.5802/aif.1421 LA - en ID - AIF_1994__44_3_927_0 ER -
%0 Journal Article %A Faraut, Jacques %A Hilgert, Joachim %A Ólafsson, Gestur %T Spherical functions on ordered symmetric spaces %J Annales de l'Institut Fourier %D 1994 %P 927-965 %V 44 %N 3 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1421/ %R 10.5802/aif.1421 %G en %F AIF_1994__44_3_927_0
Faraut, Jacques; Hilgert, Joachim; Ólafsson, Gestur. Spherical functions on ordered symmetric spaces. Annales de l'Institut Fourier, Tome 44 (1994) no. 3, pp. 927-965. doi: 10.5802/aif.1421
[Ba88] , The principal series for a reductive symmetric space I. H-fixed distribution vectors, Ann. Sci. E.N.S., 21 (1988), 359-412. | Zbl | MR | Numdam
[CK72] , and Generalized O (1,2) expansions of multiparticle amplitudes, Annals of Physics, 69 (1972), 218-278.
[De90] , Coefficients généralisés de séries principales sphériques et distributions sphériques sur Gℂ/Gℝ, Invent. Math., 105 (1991), 305-346. | Zbl | MR
[Er53a] , et. al., Higher transcendental functions I, Mc Graw-Hill, New York, 1953. | Zbl | MR
[Er53b] , et al., Higher transcendental functions II, Mc Graw-Hill, New York, 1953. | Zbl | MR
[Fa87] , Algèbres de Volterra et transformation de Laplace sphérique sur certains espaces symétriques ordonnés, Symp. Math., 29 (1987), 183-196. | Zbl | MR
[Fa91] , Espaces symétriques ordonnés et algèbres de Volterra, J. Math. Soc. Japan, 43 (1991), 133-147. | Zbl | MR
[FV86] , and , Volterra algebra and the Bethe-Salpeter equation, J. Math. Phys., 27 (1986), 840-848. | Zbl | MR
[He78] , Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York/London, 1978. | Zbl | MR
[He84] , Groups and Geometric Analysis, Academic Press, New York/London, 1984. | Zbl
[KnZu82] , and , Classification of irreducible tempered representations of semisimple groups, Ann. of Math., 116 (1982), 389-455. | Zbl | MR
[La89] , Ordered manifolds, invariant cone fields, and semigroups, Forum Math., 1 (1989), 273-308. | Zbl | MR | EuDML
[Mi83] , Une transformation de Laplace-Jacobi, SIAM J. Math., 14 (1983), 987-1003. | Zbl | MR
[Ne91] , A convexity theorem for semisimple symmetric spaces, to appear in Pac. J. Math. | Zbl
[Óla85] , Integral formulas and induced representations associated to an affine symmetric space, Math. Gotting., 33 (1985).
[Óla87] , Fourier and Poisson transformation associated to a semisimple symmetric space, Invent. Math., 90 (1987), 605-629. | Zbl | MR | EuDML
[Óla90] , Causal symmetric spaces, Math. Gotting., 15 (1990).
[ÓH92] , and , Causal symmetric spaces, book in preparation. | Zbl
[Ol81] , Invariant cones in Lie algebras, Lie semigroups and the holomorphic discrete series, Funct. Anal. and Appl., 15 (1981), 275-285. | Zbl | MR
[Ol82] , Convex cones in symmetric Lie algebras, Lie semigroups, and invariant causal (order) structures on pseudo-Riemannian symmetric spaces, Sov. Math. Dokl., 26 (1982), 97-101. | Zbl
[Vi80] , On the harmonic analysis of the elastic scattering amplitude of two spinless particles at fixed momentum transfer, Ann. Inst. H. Poincaré, A, 32 (1980), 109-123. | Numdam | EuDML
[Wo72] , The fine structure of Hermitean symmetric spaces, in Symmetric spaces, Boothby and Weiss ed., Marcel Dekker, New York, (1972). | Zbl
Cité par Sources :






