We consider the monodromy group of the Pochhammer differential equation . Let be the reduce equation modulo a prime . Then we show that is finite if and only if has a full set of polynomial solutions for almost all primes .
Nous considérons le groupe de monodromie de l’équation différentielle de Pochhammer . Soit l’équation réduite modulo un nombre premier . Alors, on montre que est fini si et seulement si admet un système fondamental de solutions polynomiales pour presque tous les nombres premiers.
@article{AIF_1994__44_3_767_0,
author = {Haraoka, Yoshishige},
title = {Finite monodromy of {Pochhammer} equation},
journal = {Annales de l'Institut Fourier},
pages = {767--810},
year = {1994},
publisher = {Association des Annales de l'Institut Fourier},
volume = {44},
number = {3},
doi = {10.5802/aif.1417},
mrnumber = {96c:33018},
zbl = {0812.33006},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1417/}
}
TY - JOUR AU - Haraoka, Yoshishige TI - Finite monodromy of Pochhammer equation JO - Annales de l'Institut Fourier PY - 1994 SP - 767 EP - 810 VL - 44 IS - 3 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1417/ DO - 10.5802/aif.1417 LA - en ID - AIF_1994__44_3_767_0 ER -
Haraoka, Yoshishige. Finite monodromy of Pochhammer equation. Annales de l'Institut Fourier, Tome 44 (1994) no. 3, pp. 767-810. doi: 10.5802/aif.1417
[1] , , Monodromy for the hypergeometric function nFn-1, Invent. Math., 95 (1989), 325-354. | Zbl | MR
[2] , , Applications of Padé approximations to the Grothendieck conjecture on linear differential equations. Lecture Notes in Math. 1135, 52-100, Springer, 1985. | Zbl | MR
[3] , Number theoretic study of Pochhammer equation. Publ. Math. de l'Université de Paris VI, Problèmes diophantiens, 93 (1989/1990).
[4] , Canonical forms of differential equations free from accessory parameters. to appear in SIAM J. Math. Anal. | Zbl
[5] , Algebraic differential equations, INDAM Symposia Math., XXIV (1981), 169-204. | Zbl | MR
[6] , Ordinary differential equations, New York, 1926.
[7] , , , , From Gauss to Painlevé : A modern theory of special functions, Vieweg, 1991. | Zbl
[8] , Nilpotent connections and the monodromy theorem : application of a result of Turrittin, Publ. Math. I.H.E.S., 39 (1970), 355-412. | Zbl | MR | Numdam
[9] , Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., 18 (1972), 1-118. | Zbl | MR
[10] , Eine Angewendung des Eisensteinschen Satz auf die Theorie der Gausschen Differentialgleichung. J. Reine Angew. Math. 127, 92-102 (1904) ; repreinted in Collected Works, vol. II, 98-108, Thales Verlag, Essen, 1987. | JFM
[11] , Reducibility condition of Pochhammer's equation. Master Thesis, Tokyo Univ., 1973 (in Japanese).
[12] , On the group of Fuchsian equations. Seminar Reports of Tokyo Metropolitan University, 1987.
[13] , On a monodromy group and irreducibility conditions of a fourth order Fuchsian differential system of Okubo type, J. Reine Angew. Math., 299/300 (1978), 38-50. | Zbl | MR
[14] , , On a fourth order Fuchsian differential equation of Okubo type, Funk. Ekvac., 34 (1991), 211-221. | Zbl | MR
[15] , , A global study of Jordan-Pochhammer differential equations. Funk. Ekvac., 19 (1976), 85-99. | Zbl | MR
[16] , , Modern Analysis, Cambridge, 1927.
[17] , On the structure of connection coefficients for hypergeometric systems, Hiroshima Math. J., 18 (1988), 309-339. | Zbl | MR
[18] , On an irreducibility condition for hypergeometric systems, preprint. | Zbl
Cité par Sources :






