Let be a bounded strictly pseudoconvex domain in and let be a positive divisor of with finite area. We prove that there exists a bounded holomorphic function such that is the zero set of . This result has previously been obtained by Berndtsson in the case where is the unit ball in .
Soit un domaine strictement pseudoconvexe borné dans , et soit un diviseur positif de d’aire finie. On montre l’existence d’une fonction bornée dont est l’ensemble des zéros de . Ceci généralise un résultat de B. Berndtsson dans le cas où est la boule unité de .
@article{AIF_1993__43_2_437_0,
author = {Arlebrink, Jim},
title = {Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$},
journal = {Annales de l'Institut Fourier},
pages = {437--458},
year = {1993},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {43},
number = {2},
doi = {10.5802/aif.1339},
mrnumber = {94f:32021},
zbl = {0782.32013},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1339/}
}
TY - JOUR
AU - Arlebrink, Jim
TI - Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$
JO - Annales de l'Institut Fourier
PY - 1993
SP - 437
EP - 458
VL - 43
IS - 2
PB - Institut Fourier
PP - Grenoble
UR - https://www.numdam.org/articles/10.5802/aif.1339/
DO - 10.5802/aif.1339
LA - en
ID - AIF_1993__43_2_437_0
ER -
%0 Journal Article
%A Arlebrink, Jim
%T Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$
%J Annales de l'Institut Fourier
%D 1993
%P 437-458
%V 43
%N 2
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.1339/
%R 10.5802/aif.1339
%G en
%F AIF_1993__43_2_437_0
Arlebrink, Jim. Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$. Annales de l'Institut Fourier, Tome 43 (1993) no. 2, pp. 437-458. doi: 10.5802/aif.1339
[AC] , , On Varopoulos' theorem about zero sets of Hp-functions, Bull. Sc. Math., 114 (1990), 463-484. | Zbl | MR
[Ar] , Zeros of bounded holomorphic functions in C2, Preprint Göteborg (1989).
[Be] , Integral formulas for the ∂∂-equation and zeros of bounded holomorphic functions in the unit ball, Math. Ann., 249 (1980), 163-176. | Zbl | MR
[BA] , , Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier, 32-3 (1982), 91-100. | Zbl | MR | Numdam
[Fo] , Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math., 98 (1976), 529-569. | Zbl | MR
[He1] , Solutions with estimates of the H. Levy and Poincaré-Lelong equations. Constructions of functions of the Nevanlinna class with prescribed zeros in strictly pseudoconvex domains, Soviet Math. Dokl., 16 (1976), 3-13.
[He2] , The Lewy equation and analysis on pseudoconvex manifolds, Russian Math., Surveys, 32-3 (1977), 59-130. | Zbl | MR
[KS] , , The Szegö kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J., 45 (1978), 197-224. | Zbl | MR
[Le1] , Fonctionnelles analytiques et fonctions entières (n variables), Presses Univ. Montréal, Montréal, 1968. | Zbl | MR
[Le2] , Fonctions plurisousharmoniques et formes différentielles positives, Gordon and Breach, Paris-London-New York, 1968. | Zbl | MR
[Sk1] , Diviseurs d'aire bornée dans la boule de C2: réflexions sur un article de B. Berndtsson, Sem. Lelong-Skoda 1978-79, LNM 822, Springer-Verlag, Berlin-Heidelberg-New York, 1980. | Zbl
[Sk2] , Valeurs au bord pour les solutions de l'opérateur et caractérisation de zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France, 104 (1976), 225-299. | Zbl | MR | Numdam
[Ra] , Holomorphic functions and integral representations in several complex variables, Springer-Verlag, Berlin-Heidelberg-New-York, 1986. | Zbl | MR
[Va] , Zeros of Hp-functions in several variables, Pacific J. Math., 88 (1980), 189-246. | Zbl
Cité par Sources :





