Multisummability of formal power series solutions of nonlinear meromorphic differential equations
Annales de l'Institut Fourier, Volume 42 (1992) no. 3, p. 517-540

In this paper a proof is given of a theorem of J. Écalle that formal power series solutions of nonlinear meromorphic differential equations are multisummable.

Dans cet article on donne une démonstration d’un théorème de J. Écalle sur la multisommabilité des solutions formelles des équations différentielles méromorphes non-linéaires.

@article{AIF_1992__42_3_517_0,
     author = {Braaksma, Boele L. J.},
     title = {Multisummability of formal power series solutions of nonlinear meromorphic differential equations},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {42},
     number = {3},
     year = {1992},
     pages = {517-540},
     doi = {10.5802/aif.1301},
     zbl = {0759.34003},
     mrnumber = {93j:34006},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1992__42_3_517_0}
}
Braaksma, Boele L. J. Multisummability of formal power series solutions of nonlinear meromorphic differential equations. Annales de l'Institut Fourier, Volume 42 (1992) no. 3, pp. 517-540. doi : 10.5802/aif.1301. http://www.numdam.org/item/AIF_1992__42_3_517_0/

[1] W. Balser, A different characterization of multisummable power series, preprint Universität Ulm, (1990).

[2] W. Balser, Summation of formal power series through iterated Laplace integrals, preprint Universität Ulm, (1990). | Zbl 0769.34004

[3] W. Balser, B. L. J. Braaksma, J.-P. Ramis and Y. Sibuya, Multisummability of formal power series solutions of linear ordinary differential equations, Asymptotic Analysis, 5 (1991), 27-45. | MR 93f:34011 | Zbl 0754.34057

[4] B. L. J. Braaksma, Laplace integrals in singular differential and difference equations, in Proc. Conf. Ordinary and Partial Differential Equations Dundee, 1978, Lecture Notes in Mathematics, Vol. 827, Springer Verlag, (1980), 25-53. | MR 82f:34064 | Zbl 0449.34005

[5] B. L. J. Braaksma, Multisummability and Stokes multipliers of linear meromorphic differential equations, J. Differential Equations, 92 (1991), 45-75. | MR 93c:34010 | Zbl 0729.34005

[6] J. Ecalle, Les Fonctions Résurgentes, Tome I, II, Publ. Math. d'Orsay (1981), Tome III, Idem (1985). | Zbl 0499.30034

[7] J. Ecalle, L'accélération des fonctions résurgentes, manuscrit, 1987.

[8] J. Ecalle, Calcul accélératoire et applications, book submitted to "Travaux en Cours" Hermann, Paris, (1990). (See also The acceleration operators and their applications, invited address ICM Kyoto (1990)).

[9] M. Hukuhara, Sur les points singuliers des équations différentielles linéaires II, J. Fac. Sci. Hokkaido Univ., 5 (1937), 123-166. | JFM 64.1144.01 | Zbl 0016.30502

[10] W. B. Jurkat, Summability of asymptotic series, preprint Universität Ulm (1990).

[11] B. Malgrange, Sur les points singuliers des équations différentielles linéaires, Enseign. Math., 20 (1974), 147-176. | MR 51 #4316 | Zbl 0299.34011

[12] B. Malgrange and J.-P. Ramis, Fonctions multisommables, Ann. Inst. Fourier, Grenoble, 42-1 & 2 (1992), 353-368. | Numdam | MR 93e:40007 | Zbl 0759.34007

[13] J. Martinet and J.-P. Ramis, Elementary acceleration and multisummability, Ann. Inst. H. Poincaré, Physique Théorique, 54-1 (1991), 1-71. | Numdam | MR 93a:32036 | Zbl 0748.12005

[14] J.-P. Ramis, Conjectures, manuscrit, 1989.

[15] J.-P. Ramis, Multisummability, preprint, 1990.

[16] J.-P. Ramis and Y. Sibuya, Hukuhara domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type, Asymp. Analysis, 2 (1989), 39-94. | MR 90k:58209 | Zbl 0699.34058

[17] Y. Sibuya, Linear differential equations in the complex domain : Problems of analytic continuation, Transl. Math. Monographs, 82, AMS, (1990). | Zbl 00048899

[18] Y. Sibuya, Gevrey asymptotics and Stokes multipliers, in Differential Equations and Computer Algebra, Academic Press, 1991, 131-147. | MR 92j:34012 | Zbl 0731.34002

[19] H. L. Turrittin, Convergent solutions of ordinary homogeneous differential equations in the neighborhood of a singular point, Acta Math., 93 (1955), 27-66. | MR 16,925a | Zbl 0064.33603

[20] W. Wasow, Asymptotic Expansions of Ordinary Differential Equations, Dover, 1976.