We study the existence of tangential boundary limits for harmonic functions in a Lipschitz domain, which belong to Orlicz-Sobolev classes. The exceptional sets appearing in this discussion are evaluated by use of Bessel-type capacities as well as Hausdorff measures.
On étudie l’existence de limites tangentielles sur le bord dans un domaine lipschitzien, pour des fonctions harmoniques des classes de Orlicz-Sobolev. L’ensemble exceptionnel est évalué par rapport aux capacités de Bessel et aux mesures de Hausdorff.
@article{AIF_1990__40_4_811_0,
author = {Mizuta, Yoshihiro},
title = {On the existence of weighted boundary limits of harmonic functions},
journal = {Annales de l'Institut Fourier},
pages = {811--833},
year = {1990},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {40},
number = {4},
doi = {10.5802/aif.1236},
mrnumber = {92g:31010},
zbl = {0715.31002},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1236/}
}
TY - JOUR AU - Mizuta, Yoshihiro TI - On the existence of weighted boundary limits of harmonic functions JO - Annales de l'Institut Fourier PY - 1990 SP - 811 EP - 833 VL - 40 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1236/ DO - 10.5802/aif.1236 LA - en ID - AIF_1990__40_4_811_0 ER -
%0 Journal Article %A Mizuta, Yoshihiro %T On the existence of weighted boundary limits of harmonic functions %J Annales de l'Institut Fourier %D 1990 %P 811-833 %V 40 %N 4 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.1236/ %R 10.5802/aif.1236 %G en %F AIF_1990__40_4_811_0
Mizuta, Yoshihiro. On the existence of weighted boundary limits of harmonic functions. Annales de l'Institut Fourier, Tome 40 (1990) no. 4, pp. 811-833. doi: 10.5802/aif.1236
[1] , Élément de la théorie classique du potentiel, 4e édition, Centre de Documentation Universitaire, Paris, 1969.
[2] , Selected problems on exceptional sets, Van Nostrand, Princeton, 1967. | Zbl | MR
[3] , Convergence au bord pour les fonctions harmoniques dans Rd de la classe de Sobolev Wd1, C.R.A.S., Paris, 294 (1982), 71-74. | Zbl | MR
[4] , A theory of capacities for potentials in Lebesgue classes, Math. Scand., 26 (1970), 255-292. | Zbl | MR
[5] , On the Boundary limits of harmonic functions with gradient in Lp, Ann. Inst. Fourier, 34-1 (1984), 99-109. | Zbl | MR | Numdam
[6] , On the boundary limits of harmonic functions, Hiroshima Math. J., 18 (1988), 207-217. | Zbl | MR
[7] , On the behavior of functions with finite weighted Dirichlet integral near the boundary, Nagoya Math. J., 53 (1974), 83-101. | Zbl | MR
[8] , and , Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math., 116 (1982), 331-360. | Zbl | MR
[9] , Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970. | Zbl | MR
[10] , on the existence of boundary values of a class of Beppo Levi functions, Trans. Amer. Math. Soc., 120 (1985), 510-525. | Zbl | MR
Cité par Sources :





