Mizuta, Yoshihiro
On the existence of weighted boundary limits of harmonic functions
Annales de l'institut Fourier, Tome 40 (1990) no. 4 , p. 811-833
Zbl 0715.31002 | MR 92g:31010
doi : 10.5802/aif.1236
URL stable : http://www.numdam.org/item?id=AIF_1990__40_4_811_0

On étudie l’existence de limites tangentielles sur le bord dans un domaine lipschitzien, pour des fonctions harmoniques des classes de Orlicz-Sobolev. L’ensemble exceptionnel est évalué par rapport aux capacités de Bessel et aux mesures de Hausdorff.
We study the existence of tangential boundary limits for harmonic functions in a Lipschitz domain, which belong to Orlicz-Sobolev classes. The exceptional sets appearing in this discussion are evaluated by use of Bessel-type capacities as well as Hausdorff measures.

Bibliographie

[1] M. Brelot, Élément de la théorie classique du potentiel, 4e édition, Centre de Documentation Universitaire, Paris, 1969.

[2] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967. MR 37 #1576 | Zbl 0189.10903

[3] A. B. Cruzeiro, Convergence au bord pour les fonctions harmoniques dans Rd de la classe de Sobolev Wd1, C.R.A.S., Paris, 294 (1982), 71-74. MR 83g:31006 | Zbl 0495.31003

[4] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand., 26 (1970), 255-292. MR 43 #3474 | Zbl 0242.31006

[5] Y. Mizuta, On the Boundary limits of harmonic functions with gradient in Lp, Ann. Inst. Fourier, 34-1 (1984), 99-109. Numdam | MR 85f:31009 | Zbl 0522.31009

[6] Y. Mizuta, On the boundary limits of harmonic functions, Hiroshima Math. J., 18 (1988), 207-217. MR 89d:31015 | Zbl 0664.31007

[7] T. Murai, On the behavior of functions with finite weighted Dirichlet integral near the boundary, Nagoya Math. J., 53 (1974), 83-101. MR 50 #626 | Zbl 0293.31012

[8] A. Nagel, W. Rudin and J. H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math., 116 (1982), 331-360. MR 84a:31002 | Zbl 0531.31007

[9] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970. MR 44 #7280 | Zbl 0207.13501

[10] H. Wallin, on the existence of boundary values of a class of Beppo Levi functions, Trans. Amer. Math. Soc., 120 (1985), 510-525. MR 32 #5911 | Zbl 0139.06301