The universal vectorial extension of a curve is described in terms of the geometry of the curve.
L’extension universelle vectorielle d’une courbe est décrite en termes de la géométrie de la courbe.
@article{AIF_1990__40_4_769_0,
author = {Coleman, Robert F.},
title = {Vectorial extensions of {Jacobians}},
journal = {Annales de l'Institut Fourier},
pages = {769--783},
year = {1990},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {40},
number = {4},
doi = {10.5802/aif.1234},
mrnumber = {92e:14042},
zbl = {0739.14016},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1234/}
}
TY - JOUR AU - Coleman, Robert F. TI - Vectorial extensions of Jacobians JO - Annales de l'Institut Fourier PY - 1990 SP - 769 EP - 783 VL - 40 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1234/ DO - 10.5802/aif.1234 LA - en ID - AIF_1990__40_4_769_0 ER -
Coleman, Robert F. Vectorial extensions of Jacobians. Annales de l'Institut Fourier, Tome 40 (1990) no. 4, pp. 769-783. doi: 10.5802/aif.1234
[C1] , The Universal Vectorial Bi-extension and p-adic Heights, to appear in Inventiones. | Zbl
[C2] , Duality for the de Rham Cohomology of Abelian Schemes, to appear. | Zbl | Numdam
[CG] , and , p-adic Heights on Curves, Advances in Math., 17 (1989), 73-81. | Zbl | MR
[C-C] , La jacobienne généralisée d'une courbe relative, C.R. Acad. Sci., Paris, t. 289 (279), 203-206. | Zbl | MR
[G] , Revêtement Étale et Groupe Fondamental (SGA I) SLN 224 (1971). | Zbl
[MaMe] and , Universal Extensions and One Dimensional Crystalline Cohomology, Springer Lecture Notes, 370, 1974. | Zbl | MR
[MaT] and , Canonical Height Pairings via Bi-extensions, Arithmetic and Geometry, Vol. I, Birkhauser, (1983), 195-237. | Zbl | MR
[O] , Rational Maps and Albanese Schemes, Thesis, University of California at Berkeley, (1984).
[S] , Groupes Algébriques et Corps de Classes, Hermann, 1959. | Zbl | MR
Cité par Sources :





