Let be an odd prime, an odd, -adic Dirichlet character and the cyclic imaginary extension of associated to . We define a “-part” of the Sylow -subgroup of the class group of and prove a result relating its -divisibility to that of the generalized Bernoulli number . This uses the results of Mazur and Wiles in Iwasawa theory over . The more difficult case, in which divides the order of is our chief concern. In this case the result is new and confirms an earlier conjecture of G. Gras.
Soit un nombre premier impair, soit un caractère impair de Dirichlet -adique et soit l’extension cyclique imaginaire de associée à . On définit une “-partie” du -sous-groupe de Sylow du groupe de classe de et on démontre un résultat établissant un lien entre sa -divisibilité et celle du nombre de Bernoulli généralisé . On utilise les résultats de Mazur et Wiles de la Théorie d’Iwasawa sur . Nous nous intéressons principalement au cas plus difficile où divise l’ordre de . Dans cette situation le résultat est nouveau et confirme une conjecture de G. Gras.
@article{AIF_1990__40_3_467_0, author = {Solomon, David}, title = {On the classgroups of imaginary abelian fields}, journal = {Annales de l'Institut Fourier}, pages = {467--492}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {40}, number = {3}, year = {1990}, doi = {10.5802/aif.1221}, mrnumber = {92a:11133}, zbl = {0694.12004}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1221/} }
TY - JOUR AU - Solomon, David TI - On the classgroups of imaginary abelian fields JO - Annales de l'Institut Fourier PY - 1990 SP - 467 EP - 492 VL - 40 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.1221/ DO - 10.5802/aif.1221 LA - en ID - AIF_1990__40_3_467_0 ER -
Solomon, David. On the classgroups of imaginary abelian fields. Annales de l'Institut Fourier, Volume 40 (1990) no. 3, pp. 467-492. doi : 10.5802/aif.1221. http://www.numdam.org/articles/10.5802/aif.1221/
[1] Regulators and Iwasawa Modules, Inventiones Mathematicae, 62 (1981), 443-457. | MR | Zbl
, ,[2] On the Behavior of the p-Adic L-function at s = 0, Inventiones Mathematicae, 50 (1978), 91-102. | MR | Zbl
& ,[3] The Iwasawa invariant µp vanishes for abelian number fields, Annals of Math., 109 (1979), 377-396. | MR | Zbl
& ,[4] Etude d'invariants relatifs aux groupes des classes des corps abéliens, Astérisque, 41-42 (1977), 35-53. | Numdam | MR | Zbl
,[5] On p-Adic L-functions and Cyclotomic Fields II, Nagoya Math. J., 67 (1977), 139-158. | MR | Zbl
,[6] Riemann-Hurwitz Formula and p-Adic Galois Representations for Number Fields, Tôhoku Math. J., 33 (1981), 263-288. | MR | Zbl
,[7] Class Fields of Abelian Extensions of ℚ, Inventiones Mathematicae, 76 (1984), 179-330. | MR | Zbl
& ,[8] Kolyvagin's System of Gauss Sums, Preprint. | Zbl
,[9] The Main Conjecture. Appendix to : Cyclotomic Fields I and II, combined 2nd edition, by S. Lang. Grad. Texts in Math., 121, Springer-Verlag, New York (1990), 397-419. | Zbl
,[10] On Lichtenbaum's Conjecture in the Case of Number Fields, PhD. Thesis, Brown University, 1988. | MR
,Cited by Sources: