Various techniques are presented for constructing (p) sets which are not for all . The main result is that there is a (4) set in the dual of any compact abelian group which is not for all . Along the way to proving this, new constructions are given in dual groups in which constructions were already known of (p) not sets, for certain values of . The main new constructions in specific dual groups are:
– there is a (2k) set which is not in for all , and , and in ( a prime, ) for , and (answering a question in J. Lopez and K. Ross, Marcel Dekker, 1975),
– there is a (2k) set which is not in for , and all
It is also shown that random infinite integer sequences are (2k) but not for , and .
Diverses techniques sont présentées pour la construction d’ensembles que ne sont pas quel que soit . Il en résulte essentiellement qu’il existe un ensemble dans le dual de tout groupe abélien compact qui n’est pas quel que soit . Au cours de la démonstration de nouvelles constructions sont données en groupes duaux dans lesquels des constructions d’ensembles et non étaient déjà connues, pour certaines valeurs de . Les principales nouvelles constructions en groupes duaux sont :
– il existe un ensemble qui n’est pas en quel que soit , et ainsi que dans ( étant un nombre premier, ) pour , et (pour répondre à une question posée dans J. Lopez and K. Ross, Marcel Dekker, 1975),
– il existe un ensemble qui n’est pas dans pour , et tout .
Il est également démontré que des suites aléatoires illimitées en entiers sont et non pas pour , et .
@article{AIF_1986__36_3_137_0,
author = {Hajela, D. J.},
title = {Construction techniques for some thin sets in duals of compact abelian groups},
journal = {Annales de l'Institut Fourier},
pages = {137--166},
year = {1986},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {36},
number = {3},
doi = {10.5802/aif.1063},
mrnumber = {88c:43007},
zbl = {0586.43004},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1063/}
}
TY - JOUR AU - Hajela, D. J. TI - Construction techniques for some thin sets in duals of compact abelian groups JO - Annales de l'Institut Fourier PY - 1986 SP - 137 EP - 166 VL - 36 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1063/ DO - 10.5802/aif.1063 LA - en ID - AIF_1986__36_3_137_0 ER -
%0 Journal Article %A Hajela, D. J. %T Construction techniques for some thin sets in duals of compact abelian groups %J Annales de l'Institut Fourier %D 1986 %P 137-166 %V 36 %N 3 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.1063/ %R 10.5802/aif.1063 %G en %F AIF_1986__36_3_137_0
Hajela, D. J. Construction techniques for some thin sets in duals of compact abelian groups. Annales de l'Institut Fourier, Tome 36 (1986) no. 3, pp. 137-166. doi: 10.5802/aif.1063
[1] and , On Λ(p) sets, Pacific. J. Math., 54 (1974), 35-38. | Zbl | MR
[2] , An Example in the Theory of Λ(p) Sets, Bollettino U.M.I., (5) 14-A (1977), 506-507. | Zbl | MR
[3] , Graph Theory, An Introductory Course, Graduate Texts in Math., Vol. 63 (1979). | Zbl | MR
[4] , Etude des Coefficients de Fourier des fonctions de Lp(G), Ann. Inst. Fourier, Grenoble, 20, fasc. 2 (1970), 335-402. | Zbl | MR | Numdam
[5] and , Theorems In The Additive Theory of Numbers, Comment. Math. Helv., 37 (1962/1963), 141-147. | Zbl | MR
[6] , and , Lacunarity for Compact Groups I, Indiana University Math. Journal, 21 (1972), 787-806. | Zbl | MR
[7] , Problems and Results in Additive Number Theory, Colloque sur la Théorie des Nombres, Bruxelles (1955), 127-137. | Zbl
[8] and , Additive Properties of Random Sequences of Positive Integers, Acta. Arith., 6 (1960), 83-110. | Zbl | MR
[9] and , Probabilistic Methods in Combinatorics, Academic Press, 1974. | Zbl | MR
[10] , and , The dimension of Almost Spherical Sections of Convex Bodies, Acta. Math., 139 (1977), 53-94. | Zbl | MR
[11] and , Essays in Commutative Harmonic Analysis, Springer-Verlag, 1979. | Zbl | MR
[12] , and , Ramsey Theory, Wiley Interscience, 1980. | Zbl | MR
[13] and , Sequences, Oxford University Press, 1966. | Zbl | MR
[14] , Ramanujan, Chelsea, 1959. | Zbl
[15] and , An Introduction to the Theory of Numbers, Oxford, 1938. | Zbl | JFM
[16] , On the Equivalence of Infinite Product Measures, Ann. of Math., 49 (1948), 214-224. | Zbl | MR
[17] , and , Linear Problems in Combinatorial Number Theory, Acta. Math. Sci. Hungar., 26 (1975), 113-121. | Zbl | MR
[18] and , Classical Banach Spaces I, Springer-Verlag, 1977. | Zbl | MR
[19] and , Sidon Sets, Marcel Dekker, 1975. | Zbl | MR
[20] , Introduction to Algebraic Geometry, Harvard Lecture Notes, 1967.
[21] , The Theory of Groups, Allyn - Bacon, 1973. | Zbl
[22] , Fourier Analysis on Groups, Interscience Publishers, 1962. | Zbl | MR
[23] , Trigonometric Series With Gaps, J. Math. Mech., 9 (1960), 203-227. | Zbl | MR
[24] , Combinatorial Mathematics, Carus Mathematical Monographs 14, Mathematical Association of America, 1963. | Zbl | MR
[25] , Modern Algebra, Ungar, 1953.
[26] , Introduction to Coding Theory, Graduate Texts in Mathematics, 86, Springer-Verlag, 1980.
[27] , Trigonometric Series, Cambridge University Press, 1959. | Zbl
Cité par Sources :





