Fully nonlinear second order elliptic equations with large zeroth order coefficient
Annales de l'Institut Fourier, Tome 31 (1981) no. 2, pp. 175-191.

On démontre l’existence de solutions classiques pour certaines équations elliptiques du deuxième ordre, fortement non linéaires, ayant des coefficients d’ordre zéro assez grands. On utilise essentiellement une estimation a priori impliquant que la norme C 2,α de la solution ne peut appartenir à un intervalle de la demi-droite réelle positive.

We prove the existence of classical solutions to certain fully non-linear second order elliptic equations with large zeroth order coefficient. The principal tool is an a priori estimate asserting that the C 2,α -norm of the solution cannot lie in a certain interval of the positive real axis.

@article{AIF_1981__31_2_175_0,
     author = {Evans, L. C. and Lions, Pierre-Louis},
     title = {Fully nonlinear second order elliptic equations with large zeroth order coefficient},
     journal = {Annales de l'Institut Fourier},
     pages = {175--191},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     number = {2},
     year = {1981},
     doi = {10.5802/aif.834},
     zbl = {0441.35023},
     mrnumber = {82m:35047},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.834/}
}
TY  - JOUR
AU  - Evans, L. C.
AU  - Lions, Pierre-Louis
TI  - Fully nonlinear second order elliptic equations with large zeroth order coefficient
JO  - Annales de l'Institut Fourier
PY  - 1981
DA  - 1981///
SP  - 175
EP  - 191
VL  - 31
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.834/
UR  - https://zbmath.org/?q=an%3A0441.35023
UR  - https://www.ams.org/mathscinet-getitem?mr=82m:35047
UR  - https://doi.org/10.5802/aif.834
DO  - 10.5802/aif.834
LA  - en
ID  - AIF_1981__31_2_175_0
ER  - 
Evans, L. C.; Lions, Pierre-Louis. Fully nonlinear second order elliptic equations with large zeroth order coefficient. Annales de l'Institut Fourier, Tome 31 (1981) no. 2, pp. 175-191. doi : 10.5802/aif.834. http://www.numdam.org/articles/10.5802/aif.834/

[1] L. C. Evans, On solving certain nonlinear partial differential equations by accretive operator methods, to appear in Isr. J. Math., (1981). | Zbl 0454.35038

[2] L. C. Evans and A. Friedman, Stochastic optimal switching and the Dirichlet problem for the Bellman equation, Trans. Am. Math. Soc., 253 (1979), 365-389. | MR 80f:93091 | Zbl 0425.35046

[3] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. | MR 56 #3433 | Zbl 0224.35002

[4] O. A. Ladyžewskaja and N. N. Ural'Ceva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. | Zbl 0164.13002

[5] P. L. Lions, Résolution des problèmes de Bellman-Dirichlet, to appear in Acta Math., (1981). | MR 83c:49038 | Zbl 0467.49016

[6] P. L. Lions, Résolution de problèmes elliptiques quasilinéaires, Arch. Rat. Mech. Anal., 74 (1980), 335-354. | MR 82a:35034 | Zbl 0449.35036

[7] I. V. Skrypnik, On the topological character of general nonlinear operators, Doklady, 239 (1978), 538-541 (Russian). | MR 58 #6678 | Zbl 0393.35031

Cité par Sources :