Let be harmonic in a bounded domain with smooth boundary. We prove that if the boundary values of belong to , where and denotes the surface measure of , then it is possible to approximate uniformly by function of bounded variation. An example is given that shows that this result does not extend to .
Soit un domaine borné à frontière régulière, et une fonction harmonique dans . On montre que si les valeurs de à la frontière appartiennent à avec ( étant la mesure de surface à la frontière), est approchable uniformément par des fonctions à variation bornée, et on montre que le résultat ne s’étend pas au cas .
@article{AIF_1980__30_2_97_0, author = {Dahlberg, Bj\"orn E. J.}, title = {Approximation of harmonic functions}, journal = {Annales de l'Institut Fourier}, pages = {97--107}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {30}, number = {2}, year = {1980}, doi = {10.5802/aif.787}, mrnumber = {82i:31010}, zbl = {0417.31005}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.787/} }
TY - JOUR AU - Dahlberg, Björn E. J. TI - Approximation of harmonic functions JO - Annales de l'Institut Fourier PY - 1980 SP - 97 EP - 107 VL - 30 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.787/ DO - 10.5802/aif.787 LA - en ID - AIF_1980__30_2_97_0 ER -
Dahlberg, Björn E. J. Approximation of harmonic functions. Annales de l'Institut Fourier, Volume 30 (1980) no. 2, pp. 97-107. doi : 10.5802/aif.787. http://www.numdam.org/articles/10.5802/aif.787/
[1] Interpolation by bounded analytic functions and the Corona problem, Ann. Math., 76 (1962), 547-559. | MR | Zbl
,[2] The Corona Problem, in Lecture Notes in Mathematics, vol 118, Springer Verlag, Berlin, 1969.
,[3] Weighted norm inequalities for the Lusin area integral and the non tangential maximal functions for functions harmonic in a Lipschitz domain, to appear in Studia Math. | EuDML | MR | Zbl
,[4] Hp-spaces of several variables, Acta Math., 129 (1972), 137-193. | MR | Zbl
and ,[5]
, to appear.[6] Integral inequalities of Poincaré and Wirtinger type for BV functions, Amer. J. of Math., 99 (1977), 1345-1360. | MR | Zbl
and ,[7] The radial variation of analytic functions, Duke Math. J., 22 (1955), 235-242. | MR | Zbl
,[8] Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, New Jersey, 1970. | MR | Zbl
,[9] BMO functions and the -equation, Pacific J. Math., 71 (1977), 221-273. | MR | Zbl
,Cited by Sources: