Valdivia, Manuel
On certain barrelled normed spaces
Annales de l'institut Fourier, Tome 29 (1979) no. 3 , p. 39-56
Zbl 0379.46004 | MR 81d:46006
doi : 10.5802/aif.752
URL stable : http://www.numdam.org/item?id=AIF_1979__29_3_39_0

Soit 𝒜 une σ-algèbre dans un ensemble X. Si A appartient à 𝒜, soit e(A) la fonction caractéristique de A. Soit 0 (X,𝒜 l’espace vectoriel engendré par {e(A):A𝒜} avec la topologie de la convergence uniforme. On montre que si (E n ) est une suite croissante des sous-espaces de 0 (X,𝒜) dont l’union est 0 (X,𝒜) il existe un entier positif p, telle que E p est un sous-espace dense et tonnelé de 0 (X,𝒜). Quelques nouveaux résultats dans la théorie de la mesure sont déduits de ce fait.
Let 𝒜 be a σ-algebra on a set X. If A belongs to 𝒜 let e(A) be the characteristic function of A. Let 0 (X,𝒜 be the linear space generated by {e(A):A𝒜} endowed with the topology of the uniform convergence. It is proved in this paper that if (E n ) is an increasing sequence of subspaces of 0 (X,𝒜) covering it, there is a positive integer p such that E p is a dense barrelled subspace of 0 (X,𝒜), and some new results in measure theory are deduced from this fact.

Bibliographie

[1] G. Bennett and N.J. Kalton, Addendum to “FK-spaces containing c0”, Duke Math. J., 39, (1972), 819-821. MR 47 #2312 | Zbl 0254.46009

[2] R.B. Darst, On a theorem of Nikodym with applications to weak convergence and von Neumann algebra, Pacific Jour. of Math., V. 23, No 3, (1967), 473-477. MR 38 #6360 | Zbl 0189.44901

[3] A. Grothendieck, Espaces vectoriels topologiques, Departamento de Matemática da Universidade de Sao Paulo, Brasil, 1954. MR 17,1110a | Zbl 0058.33401

[4] I. Labuda, Exhaustive measures in arbitrary topological vector spaces, Studia Math., LVIII, (1976), 241-248. MR 55 #8789 | Zbl 0365.46037

[5] M. Valdivia, Sobre el teorema de la gráfica cerrada, Collectanea Math., XXII, Fasc. 1, (1971), 51-72. Zbl 0223.46009

[6] M. Valdivia, On weak compactness, Studia Math., XLIX, (1973), 35-40. MR 48 #11969 | Zbl 0243.46003