Let , where the are the numbers rearranged so that . Then for any convex increasing , . The special case , , gives an equivalent of Littlewood.
Soit , où la suite est le réarrangement décroissant de la suite . Pour toute fonction positive, convexe et croissante, on a . Dans le cas particulier , , on obtient l’inégalité de Littlewood .
@article{AIF_1976__26_2_29_0, author = {Montgomery, Hugh L.}, title = {A note on rearrangements of {Fourier} coefficients}, journal = {Annales de l'Institut Fourier}, pages = {29--34}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {26}, number = {2}, year = {1976}, doi = {10.5802/aif.612}, mrnumber = {53 #11292}, zbl = {0318.42009}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.612/} }
TY - JOUR AU - Montgomery, Hugh L. TI - A note on rearrangements of Fourier coefficients JO - Annales de l'Institut Fourier PY - 1976 SP - 29 EP - 34 VL - 26 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.612/ DO - 10.5802/aif.612 LA - en ID - AIF_1976__26_2_29_0 ER -
Montgomery, Hugh L. A note on rearrangements of Fourier coefficients. Annales de l'Institut Fourier, Volume 26 (1976) no. 2, pp. 29-34. doi : 10.5802/aif.612. http://www.numdam.org/articles/10.5802/aif.612/
[1] On the upper and lower majorant properties of Lp(G), Quart. J. Math. (Oxford), (2), 24 (1973), 119-128. | MR | Zbl
,[2] II, Integral means, univalent functions and circular symmetrizations, Acta Math., 133 (1974), 139-169. | MR | Zbl
,[3] Notes on the theory of series (XIII) : Some new properties of Fourier constants, J. London Math. Soc., 6 (1931), 3-9. | JFM | Zbl
and ,[4] A new proof of a theorem on rearrangements, J. London math. Soc., 23 (1949), 163-168. | MR | Zbl
and ,[5] Some inequalities of Littlewood and a problem on rearrangements, J. London Math. Soc., 36 (1961), 362-376. | MR | Zbl
,[6] On a theorem of Paley, J. London Math. Soc., 29 (1954), 387-395. | MR | Zbl
,[7] On inequalities between f and f⋆, J. London Math. Soc., 35 (1960), 352-365. | MR | Zbl
,[8] Topics in multiplicative number theory, Lecture Notes in Mathematics, Springer-Verlag, Vol. 227, (1971), 187 pp. | MR | Zbl
,[9] Some theorems on orthogonal functions, Studia Math., 3 (1931), 226-238. | EuDML | JFM | Zbl
,[10] Majorant problems for Fourier coefficients, to appear. | Zbl
,[11] Trigonometric series, Second Edition, Cambridge University Press, 1968.
,Cited by Sources: