Let , where the are the numbers rearranged so that . Then for any convex increasing , . The special case , , gives an equivalent of Littlewood.
Soit , où la suite est le réarrangement décroissant de la suite . Pour toute fonction positive, convexe et croissante, on a . Dans le cas particulier , , on obtient l’inégalité de Littlewood .
@article{AIF_1976__26_2_29_0,
author = {Montgomery, Hugh L.},
title = {A note on rearrangements of {Fourier} coefficients},
journal = {Annales de l'Institut Fourier},
pages = {29--34},
year = {1976},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {26},
number = {2},
doi = {10.5802/aif.612},
mrnumber = {53 #11292},
zbl = {0318.42009},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.612/}
}
TY - JOUR AU - Montgomery, Hugh L. TI - A note on rearrangements of Fourier coefficients JO - Annales de l'Institut Fourier PY - 1976 SP - 29 EP - 34 VL - 26 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.612/ DO - 10.5802/aif.612 LA - en ID - AIF_1976__26_2_29_0 ER -
Montgomery, Hugh L. A note on rearrangements of Fourier coefficients. Annales de l'Institut Fourier, Tome 26 (1976) no. 2, pp. 29-34. doi: 10.5802/aif.612
[1] , On the upper and lower majorant properties of Lp(G), Quart. J. Math. (Oxford), (2), 24 (1973), 119-128. | Zbl | MR
[2] , II, Integral means, univalent functions and circular symmetrizations, Acta Math., 133 (1974), 139-169. | Zbl | MR
[3] and , Notes on the theory of series (XIII) : Some new properties of Fourier constants, J. London Math. Soc., 6 (1931), 3-9. | Zbl | JFM
[4] and , A new proof of a theorem on rearrangements, J. London math. Soc., 23 (1949), 163-168. | Zbl | MR
[5] , Some inequalities of Littlewood and a problem on rearrangements, J. London Math. Soc., 36 (1961), 362-376. | Zbl | MR
[6] , On a theorem of Paley, J. London Math. Soc., 29 (1954), 387-395. | Zbl | MR
[7] , On inequalities between f and f⋆, J. London Math. Soc., 35 (1960), 352-365. | Zbl | MR
[8] , Topics in multiplicative number theory, Lecture Notes in Mathematics, Springer-Verlag, Vol. 227, (1971), 187 pp. | Zbl | MR
[9] , Some theorems on orthogonal functions, Studia Math., 3 (1931), 226-238. | Zbl | JFM | EuDML
[10] , Majorant problems for Fourier coefficients, to appear. | Zbl
[11] , Trigonometric series, Second Edition, Cambridge University Press, 1968.
Cité par Sources :





