The equivalence of the two following properties is proved for every Banach lattice :
1) is weakly sequentially complete.
2) Every -Borel measurable linear functional on is -continuous.
On montre que pour tout espace de Banach réticulé, les deux propriétés suivantes sont équivalentes :
1) est faiblement séquentiellement complet.
2) Toute forme linéaire -mesurable sur le dual topologique est continue.
@article{AIF_1976__26_2_25_0, author = {Wickstead, A. W.}, title = {A characterization of weakly sequentially complete {Banach} lattices}, journal = {Annales de l'Institut Fourier}, pages = {25--28}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {26}, number = {2}, year = {1976}, doi = {10.5802/aif.611}, mrnumber = {53 #14080}, zbl = {0295.46017}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.611/} }
TY - JOUR AU - Wickstead, A. W. TI - A characterization of weakly sequentially complete Banach lattices JO - Annales de l'Institut Fourier PY - 1976 SP - 25 EP - 28 VL - 26 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.611/ DO - 10.5802/aif.611 LA - en ID - AIF_1976__26_2_25_0 ER -
%0 Journal Article %A Wickstead, A. W. %T A characterization of weakly sequentially complete Banach lattices %J Annales de l'Institut Fourier %D 1976 %P 25-28 %V 26 %N 2 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.611/ %R 10.5802/aif.611 %G en %F AIF_1976__26_2_25_0
Wickstead, A. W. A characterization of weakly sequentially complete Banach lattices. Annales de l'Institut Fourier, Volume 26 (1976) no. 2, pp. 25-28. doi : 10.5802/aif.611. http://www.numdam.org/articles/10.5802/aif.611/
[1] Borel structures in groups and semi-groups, Math. Scand., 28 (1971) 124-128. | MR | Zbl
,[2] Borel structures and a topological zero-one law, Math. Scand., 29 (1971), 245-255. | MR | Zbl
,[3] Abstract Kothe spaces II, Proc. Cam. Phil. Soc., 63 (1967), 951-956. | MR | Zbl
,[4] Notes on Banach function spaces, Nederl. Akad. Wetensch. Proc. Ser. A., 67 (1964) (a) 507-518, (b) 519-529. | Zbl
and ,[5] Zur schwachen Kompaktheit in Banachverbanden, Math. Z.j 134 (1973), 303-315. | MR | Zbl
,Cited by Sources: