A note on spaces of type H +C
Annales de l'Institut Fourier, Volume 25 (1975) no. 2, p. 213-217

We show that a theorem of Rudin, concerning the sum of closed subspaces in a Banach space, has a converse. By means of an example we show that the result is in the nature of best possible.

Nous montrons qu’un théorème de Rudin, concernant la somme des sous-espaces fermés dans un espace de Banach, a une réciproque. Au moyen d’un exemple nous montrons que ce résultat a le caractère d’être le meilleur possible.

@article{AIF_1975__25_2_213_0,
     author = {Stegenga, David},
     title = {A note on spaces of type $H^\infty +C$},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Louis-Jean},
     address = {Gap},
     volume = {25},
     number = {2},
     year = {1975},
     pages = {213-217},
     doi = {10.5802/aif.561},
     zbl = {0301.46041},
     mrnumber = {52 \#11546},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1975__25_2_213_0}
}
Stegenga, David. A note on spaces of type $H^\infty +C$. Annales de l'Institut Fourier, Volume 25 (1975) no. 2, pp. 213-217. doi : 10.5802/aif.561. http://www.numdam.org/item/AIF_1975__25_2_213_0/

[1] H. Helson and D. Sarason, Past and future, Math. Scand., 21 (1967), 5-16. | Zbl 0241.60029

[2] W. Rudin, Spaces of Type H∞ + C, Annales de l'Institut Fourier, 25, 1 (1975), 99-125. | Numdam | Zbl 0295.46080

[3] W. Rudin, Projections on invariant subspaces, Proc. AMS, 13 (1962), 429-432. | Zbl 0105.09504

[4] D. Sarason, Generalized interpolation in H∞, Trans. Amer. Math. Soc., 127 (1967), 179-203. | Zbl 0145.39303

[5] L. Zalcman, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc., 144 (1969), 241-269. | Zbl 0188.45002